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Abstract: This paper presents a new method with a set of desirable properties for multi-pitch esti-
mation of piano recordings. We propose a framework based on a set of classifiers to analyze audio
input and to identify piano notes present in a given audio signal. Our system’s classifiers are evolved
using Cartesian genetic programming: we take advantage of Cartesian genetic programming to
evolve a set of mathematical functions that act as independent classifiers for piano notes. Two
significant improvements are described: the use of a harmonic mask for better fitness values and a
data augmentation process for improving the training stage. The proposed approach achieves com-
petitive results using F-measure metrics when compared to state-of-the-art algorithms. Then, we go
beyond piano and show how it can be directly applied to other musical instruments, achieving even
better results. Our system’s architecture is also described to show the feasibility of its parallelization
and its implementation as a real-time system. Our methodology is also a white-box optimization
approach that allows for clear analysis of the solutions found and for researchers to learn and test
improvements based on the new findings.

Keywords: multi-pitch estimation; multiple-F0 estimation; evolutionary computing; Cartesian
genetic programming; genetic programming; music transcription; machine learning

1. Introduction

Multi-pitch estimation or multiple fundamental frequency estimation is the process of
extracting musical notation (pitches) from a given acoustic signal. Multi-pitch estimation
is a task that belongs to content-based music information retrieval. Music information
retrieval (MIR) has drawn more attention due to the exponential growth of digital music [1].
Howbeit, there is a significant gap between high-level human perception and low-level
signal features. Some music features such as rhythm and pitch have an important role
in helping bridge this gap since they are more closely related to the human perception
of music. Multiple fundamental frequency estimation was introduced by Shields [2] in
his research on separating co-channel speech signals. Later, multiple-F0 estimation was
extended to polyphonic pitch estimation or multi-pitch estimation (MPE) in the context
of automatic music transcription (AMT) for polyphonic music signals [3,4]. Among all
musical instruments, the piano is one of the most popular instruments worldwide and
one of the most complex in what concerns pitch variety and number of simultaneous
notes [5]. These are the main reasons that motivate us to research the multi-pitch estimation
of piano sounds.

A single piano note is a monophonic sound comprising a quasi-harmonic spectrum [6],
where the lowest frequency of the harmonic series corresponds with the perceived pitch
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or fundamental frequency (F0). The combination of multiple piano notes (monophonic
sounds) results in a polyphonic sound with multiple pitches. MPE refers to determination
of the underlying pitches of an obtained polyphonic sound. Unlike mono-pitch estimation,
multi-pitch estimation deals with issues such as the source number ambiguity and the oc-
tave ambiguity (Figure 1) (Figure extracted from [7], with the author’s consent). Therefore,
multi-pitch estimation is a challenging problem. Although there has been a lot of research
devoted to it, it still remains completely unsolved.

Figure 1. Example of source number and octave ambiguity - The spectrum of a single piano note C4,
Musical Instrument Digital Interface (MIDI) note number 60, is almost identical to the spectrum of the
two-key combination of C4 and C5. C5 is one octave apart from C4. (a) Spectrum of C4. (b) Spectrum
of the mixture of C4 and C5. (c) Signal difference between (a,b).

In general, multi-pitch estimation approaches and algorithms assume that there
might be more than one harmonic source in the same short-time signal. As explained
by Yeh et al. [8], that signal may also be expressed as a sum of harmonic sources plus a
residual (The residual, z[n], comes from components that are not explained by sinusoids,
for instance, the background noise, spurious components, or nonharmonic partials.):

y[n] =
M

∑
m=1

ym[n] + z[n], M > 0 with ym[n] ≈ ym[n + Nm], (1)

where M is the number of harmonic sources, n represents the discrete time, ym[n] is the
quasi-periodic part of the mth source signal, Nm represents the period of the mth source,
and z[n] is the residual. According to Fourier series and the signal quasi periodicity, y[n]
can be written as follows:

y[n] =
M

∑
m=1

{ ∞

∑
h=1

Am,h cos(hωmn + φm,h)
}
+ z[n]

≈
M

∑
m=1

Hm

∑
h=1

Am,h cos(hωmn + φm,h) + z[n]. (2)
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Last-step approximation is common for practical usage: a finite and small number of
sinusoids H is commonly used to approximate a quasi-periodic signal.

The main difficulty associated with MPE is dealing with the modeling of y[n]. This task
implies estimating the number of harmonic sources and their related F0s. Decomposition
of the observed signal into an unknown number of model sources not only is a problem of
pattern matching but also can be seen as a classification problem, i.e., identifying the most
likely combination of F0s for the modeling of y[n].

Evolutionary algorithms are very successful in solving both pattern matching and
classification problems [9]. This led us to propose a multi-pitch estimation system based
on an evolutionary approach: genetic programming (GP). Among all GP variants available,
we decided to innovate by addressing this problem using Cartesian genetic programming
(CGP). CGP was first presented by Miller in [10] and has been proven to be able to classify
problems related to signal and image processing [11].

1.1. Previous Approaches to Multi-Pitch Estimation

There are detailed reviews of the scientific literature on MPE [12–14], and according
to [12], those works on MPE can be classified in three different groups, depending on
the main technique used: feature-based approaches focus on devising measures of pitch
salience and criteria for selecting and scoring pitch candidates from time-frequency rep-
resentations [8,15–22] and most recently, in 2020, using two-dimensional spectrum [23];
statistical model-based approaches use probabilistic methods to model the spectral envelope
or peaks and then formulates MPE as a maximum a posteriori or maximum likelihood
problem [24–31]; and spectrogram factorization-based approaches use templates of spectral
patterns of different pitch combinations and then decomposes an input magnitude spec-
trogram according to the activation of different templates [7,32–37]. Another common
categorization of MPE techniques is based on whether there is usage of a training dataset
with ground-truth pitches. Early research was usually classified as unsupervised; however,
today, there is an increase in work based on supervised methods. Among them, there
are neural networks and some evolutionary algorithms (EAs). Neural networks were
used with salient results by Marolt [38], where he presents a connectionist approach to
the transcription of piano music using a partial tracking technique. More recently, an
end-to-end deep learning model for polyphonic piano music transcription was developed
by Sigtia et al. [39], and Böck [40] used recurrent neuronal networks (RNNs) for multi-pitch
estimation and onset detection.

Evolutionary Algorithms and Genetic Programming in Multi-Pitch Estimation

There are several approaches to the MPE problem using evolutionary algorithms.
Genetic algorithms (GA) were probably the first evolutionary approach to multi-pitch
estimation, as described in 2001 by Garcia [41]. Garcia proposes that polyphonic pitch
detection can be considered a search space problem where the goal is to find pitches
that compose the polyphonic acoustic signal. In 2007, Lu [42] proposed an automatic
music transcription system based on genetic algorithms: this approach assumes that a
polyphonic audio signal can only be produced by the 128 possible pitches (from low C,
frequency 8.18 Hz, to a high G, 12,543.88 Hz) defined in the MIDI. specification [43]. In 2007,
Reis et al. [44] proposed the first genetic algorithm approach to music transcription using
real audio recordings. The authors explored the influence of the “harmonic overfitting”
phenomena, and in 2012, Reis et al. [45] presented a new genetic algorithm to perform
automatic transcription of polyphonic piano music with spectral envelope modeling and
noise level estimation.

Genetic programming (GP) is also a subset of evolutionary algorithms. However,
GP has some important differences when compared to genetic algorithms (GAs). Genetic
programming applies the evolutionary process to a population of computer programs. The
aim of the optimization is to evolve a program to produce a behavior as close as possible
to some desired goal. Regarding MPE, the goal is multi-pitch estimation of piano music.
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As far as we know, there is no record of any work in this area using any form of GP until
2016, when we first proposed it in [46]. In that work, an innovative methodology for
pitch estimation of piano music using a genetic programming-based system is presented.
This was our first approach to dealing with the MPE problem and a specific type of GP
called Cartesian genetic programming was used [47]. We used a divide-and-conquer
method, evolving one classifier for each piano key and its corresponding pitch (a total
of 61 classifiers) that can run in parallel. Together, those classifiers acted as a multi-pitch
estimator system. The CGP system was built using a previously developed toolbox for
MatLab called CGP4Matlab [48] (Download available: https://github.com/tiagoinacio/
cgp4matlab, accessed on 21 March 2021), which is particularly suited for signal processing
and image processing problems and is available for general use. That technique was then
improved using a CGP multi-pitch estimation system with the aid of a spectral harmonic
mask [49], resulting in better accuracy results. However, there is still room for improvement,
and this led us to what we present in this paper.

We propose an improved version of the algorithm, with some innovations and an
extended MPE system based on Cartesian genetic programming for piano music. This
system was developed for an AMT frame-based usage and takes advantage of the authors’
knowledge previously acquired during other research [46,48]. Our system is the first
white-box MPE-based approach that uses GP, in particular Cartesian genetic programming.
The main innovations of this new CGP system are the use of a new onset detector, real-
time computing performance using a parallel system architecture, and an artificial data
augmentation process for the training stage using the onset detector, which resulted in
accuracy improvements. We can summarize the main advantages of our approach and
implementation as follows:

• The accuracy results are in line with the state-of-the-art approaches that use other
non-evolutionary methodologies.

• It works with different piano models (upright and grand pianos) and with both digital
and acoustic pianos.

• It does not depend on harmony rules, western music rules, or chords construction
rules, which was typically the case for previous approaches.

• It uses improved onset detection.
• It provides white-box analyses, which allow other researchers to study the generated

models and to use them as an optimization baseline.
• It achieves real-time computing performance.
• The technique allows us to perform MPE for other instruments besides piano.
• The significant accuracy results improved compared to our previous approach.

The rest of this document is structured as follows: Section 2 overviews the proposed
system; Section 3 describes the implemented onset detection algorithm; Section 4 describes
Cartesian genetic programming as a genetic algorithm technique; Section 5 describes our
CGP system and its main features; Section 6 shows our experiments and results; and, finally,
Section 7 presents our conclusions and discusses future work.

2. System Overview

Genetic programming is aimed at creating computer programs capable of solving a
given problem. Cartesian genetic programming builds programs in the form of graphs.
To address the MPE problem, our CGP system generates programs in the form of graphs
using a set mathematical functions (function set). This way, each each individual will be an
evolved graph encoding a complex mathematical expression.

In our system, each piano note is identified by a CGP evolved classifier (Figure 2). This
way, for identifying 61 musical notes (from the C2 to the C7), we need to have 61 evolved
classifiers, one for each musical note or piano key. Each one of these classifiers uses several
inputs, all of them derived from the acquired audio signal and returning one binary output,
indicating whether the corresponding piano note is present in the given signal. Basically,
a sound vector is sampled using the onset detector proposed by Martins [50] with some

https://github.com/tiagoinacio/cgp4matlab
https://github.com/tiagoinacio/cgp4matlab
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improvements. Then, five inputs are computed from the original sound vector using
several signal processing techniques. These inputs are then used by the classifier CGP
functions (Fn(I)) to accomplish an output vector. This vector suffers a binarization process
to obtain a final binary output. The training process of the system classifiers is explained in
Section 5.1.

Figure 2. Block diagram of our multi-pitch estimation (MPE) system with multiple classifiers: first,
an onset detector is applied to the input audio signal to infer where are the musical notes; then, an
audio frame with 4096 audio samples (93 milliseconds) is extracted, starting at the onset time; the
extracted audio fragment is then transformed to 5 different representations in the frequency domain,
resulting in 5 different inputs (I1 . . . I5); and these 5 inputs are fed into the 61 evolved classifiers, so
that they can identify whether the corresponding musical notes are present in the extracted audio
frame. Each of the 61 classifiers has a binary output.

The source code of our proposal is available for download at https://github.com/
rolandomiragaia/CGP-MPE-MC, accessed on 21 March 2021. It is based on our CGP4MatLab
toolbox, detailed in [48], as well as a generic implementation of our CGP multi-pitch esti-
mation system.

3. Onset Detection

The onset detection algorithm is based on the onset detection algorithm used by
Martins [50], with some modifications and improvements. The approach used is based on
spectral flux as the onset detection function, defined as follows:

SF[n] =

N
2

∑
k=0

H(|X[n, k]| − |X[n− 1, k]|) (3)

where H(x) = x+|x|
2 is the half wave rectifier function, X(n, k) represents the kth bin of the

nth frame of short time Fourier transform (STFT) of the input x[n]. Linear magnitude is
used instead of logarithmic. N is the Hamming window size. The experiments performed
use a 46 ms frame size (i.e., N = 2048 samples, with sampling rate fs = 44, 100 Hz) and a
11.6 ms hop size (h = 512 samples).

As in [50], in order to reduce the false-positive rate, the onset detection function SF(n)
is smoothed using a Butterworth filter defined by H(z) = 0.1173+0.2347z−1+0.1174z−2

1−0.8252z−1+0.2946−2 . To
avoid phase distortion (which would deviate the time of the detected onsets), the input
data are filtered in both the forward and backward directions. The result has precisely zero
phase distortion, with the magnitude being the square magnitude of the filter response
and with the order of the filter being double the order specified by H(z). We also used an
envelope function EH[p], where p represents the discrete time variable of the input signal
x[p] (The input signal is in time domain x[n], represented as x[p], because the variable n
now represents the frame number and not the discrete time.) and the envelope function is
calculated over the input time signal x[p], using Hilbert transformation for discrete time
signals [51].

https://github.com/rolandomiragaia/CGP-MPE-MC
https://github.com/rolandomiragaia/CGP-MPE-MC


Appl. Sci. 2021, 11, 2902 6 of 27

The onsets are detected using a peak-picking algorithm to find a local maximum.
A peak at instant t = nH

fs
is chosen as an onset if the following conditions are met:

1. SF[n] ≥ SF[k] ∀ k : n− w ≤ k ≤ n + m

2. SF[n] > ∑n+w
k=n−mw SF[k]
mw+w+1 × thres + δ

3. ∑n∗h+N
k=n∗h+1 EH[k]

N > θ

where w = 6 is the window size to achieve the local maxima, m = 4 is a multiplier so
that the average should be calculated in a broader area before the peak, thres = 2.0 is a
threshold value relative to the local average that a peak must reach in order to be sufficiently
prominent to be selected as an onset, and δ = 10−20 is a residual that is combined with
θ = 0.01 to avoid false-positive detection in silent regions of the signal. All these parameters
were adjusted empirically on previously performed tests using a collection of several piano
compositions played by different pianos. Figure 3 shows an example of a sound sample of
2.1 seconds with 3 onsets detected for frames 29, 90, and 141.

Figure 3. Onset detection process—(above) input signal in time domain x[n] and its Hilbert envelope
EH[n]; (bellow) the spectral flux SF[n], where n represents the frame number and the spectral flux
smoothed, and in black are the onsets detected and marked.

Onset detection is typically used for audio segmentation: since onset detectors infer
where musical notes are present in the input audio signal, the input signal can be split into
several audio fragments according to the onset information. This is a fundamental process
in automatic music transcription algorithms that are based on note tracking. Despite our
approach being frame-based, we also use our onset detector during the training stage for
data augmentation purposes, hence improving the training process. The data augmentation
process using the onset detector is explained in Section 5.2.

4. Cartessian Genetic Programming

Cartesian genetic programming is an increasingly popular and efficient form of genetic
programming [52,53] proposed by Julian Miller in 2000 [47]. It is seen as a flexible form
of genetic programming that is concerned with the automatic evolution of computational
structures, such as computer programs, or mathematical equations or functions. CGP
encodes a graphical representation of computer programs. The computational structures
encoded are represented as a string of integers (sometimes real values). These integers,
known as genes, determine the functions of nodes in the graph, the connections between
nodes, the connections to inputs, and the locations in the graph where outputs are taken
from. Therefore, the genotype consists of a list of integers (and possibly real parameters)
that represent the program primitives and how they are connected together (Figure 4).
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Figure 4. A Cartesian genetic programming (CGP) generic example of a genotype and its correspond-
ing phenotype. There is a grid of nodes connected as a graph in which the functions are chosen
from a set of primitive functions, (the function set). There are 2 inputs (x0 and x1) and 4 outputs
(OA, OB, OC, and OD). The grid has nc = 3 columns and nr = 2 rows. Each node has 3 genes: the
underlined is the function gene, which corresponds to the mathematical function being used, and
the other 2 genes are the connection genes or node inputs. These inputs can refer to other nodes or
system inputs.

CGP is called “Cartesian” because it considers a grid of nodes that are addressed
in a Cartesian coordinate system. Each node may contain additional genes for encoding
additional parameters that might be necessary for specific functions, for instance, a thresh-
old value. Typically, all functions have as many inputs as the maximum function arity
and unused connections are ignored. As in any evolutionary algorithm, each individual
encodes a possible solution to the problem addressed. The set of individuals is called the
population. To evaluate the quality of each individual or solution, a fitness function is
used. This way, all the solutions among the population are evaluated and the current best
solution is found. The next population (next generation) is then generated based on the
current best individual. The next generation contains a new set of possible solutions and
becomes the current population. This process is repeated over and over, from iteration
(generation) to iteration. This way, the quality of the population improves (evolves) from
generation to generation, pursuing the best solution to the problem. The general CGP is
described in Algorithm 1: it begins with the generation of an initial population; then, a
fitness function is used to evaluate the quality of each individual in the population; the
evolutionary strategy chooses the fittest one (best individual) and promotes it directly to
the next generation; the remaining spots in the population are filled with mutated versions
of the fittest individual; and the algorithm stops when the stopping criterion is reached.

Algorithm 1 General CGP algorithm.

1: Generate initial population at random (subject to constraints)

2: while stopping criterion not reached do

3: Evaluate fitness of genotypes in population

4: Promote fittest genotype to new population

5: Fill remaining places in the population with mutated versions of the fittest

6: Return to step 2 until stopping criterion reached

7: end while
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5. Proposed CGP System

A CGP-encoded individual, in its general form, consists of a grid of nodes, where each
node has connections and a function chosen from a set of primitive functions. This grid
of nodes has three main properties: nc (columns), nr (rows), and levels-back (how many
previous columns of cells have their outputs connected to a node in the current column).
Depending on nr, nc, and levels-back, a wide range of graphs can be generated. When
nr = 1 and levels-back = nc, arbitrarily directed graphs can be created with a maximum
depth. Choosing these values imposes the least constraints. Therefore, this is the best and
most general choice [54].

In our system, each piano note is identified by a classifier previously evolved using
CGP (training stage). Therefore, for identifying the musical notes between C2 (65 Hz) and
C7 (2093 Hz), we need to evolve 61 classifiers: one for each musical note or piano key. Each
classifier has several inputs, all of them extracted from the input audio signal and returning
one binary output, indicating whether the corresponding piano note is present in the given
signal. Basically, there are two different stages in our system: the training stage and the test
or working stage. Both stages have processes in common, and they share the majority of
the blocks illustrated in Figure 5, which depicts the training process. The training stage
is crucial, and it is responsible for the learning process that conducts the evolution of
individuals. The evolution leads to the final classifiers, which are mathematical expressions
evolved through CGP.

Figure 5. Our CGP system block diagram: the training stage starts with a augmentation data process
using onset detection, it generates the inputs, the system engine is CGP toolbox that produces the
output vector, then binarization and fitness evaluate the individuals and feedback for a CGP toolbox
to proceed to the next generation of the evolutionary process.

5.1. Training

To develop a classifier system, the first stage consists in training the system classifiers.
The training process of our system is described in Figure 5. First, onset detection is
performed to infer where the musical notes are in the input audio signal. Then, according
to the output of the onset detector, a data augmentation process is performed to increase
the size of the training dataset and, thus, to improve the variability and inference capability
of the system. Then, some preprocessing is applied on the acquired audio frames to
generate the desired system inputs for all the classifiers. These inputs, along with the
function set and CGP parameters are used in the CGP block, where the classifiers are
evolved independently using our CGP toolbox [48]. During this evolutionary process, each
classifier generates an output vector. Then, this output vector undergoes a binarization
process to obtain a final binary output. Then, a fitness function is computed to evaluate the
quality of the corresponding classifier using F-measure. The engine of the implemented
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evolutionary process is the CGP block: it is responsible for the evolutionary process that
is done during the training stage to accomplish one final classifier for each piano note: a
graph of mathematical functions encoding a mathematical expression capable of detecting
the presence of the sound produced by the corresponding piano key.

Many decisions and processes had to be made and implemented besides the CGP.
We employed a data-augmentation mechanism (see Section 5.2). We implemented a
preprocessing task (Section 5.3) to generate the system inputs and had to figure out which
inputs to use and how to represent them (Section 5.4). Additionally, we had to create a
gene encoding (Section 5.5) and we had to decide what types of mutations (Section 5.6) and
which evolutionary strategy (Section 5.7) to use as well. We also developed a binarization
strategy (Section 5.8) for the output and fitness computation (Section 5.9).

5.2. Data Augmentation

Data augmentation encompasses a suite of techniques that enhance the size and
quality of training datasets [55]. In many classification problems, the available data are
insufficient to train accurate and robust classifiers. Thus, to alleviate the relative scarcity of
the data compared to the number of free parameters of a classifier, one popular approach is
data augmentation (DA). Data augmentation consists in transforming the available samples
into new samples using label-preserving transformations.

In our classification problem, the amount of data was large enough; however, it was
not balanced for our multi-pitch approach. For each of the 61 classifiers to be properly
trained, we needed to build a balanced dataset with two classes: positive cases and negative
cases. Our training data built for each classifier and its training instances were extracted
from the MIDI Aligned Piano Sounds (MAPS) database [56]. This way, we had 61 different
classifiers and 61 different pitches. Therefore, the ratio of positive cases and negative cases
in the database for each pitch was ≈ 1

60 .
For the data augmentation process, first we applied our onset detector on the input

audio signal. Then, based on the inferred onset position (Ios), we acquired three different
audio fragments translated in time. Each acquired audio fragment had 4096 samples
length (≈ 0.93 milliseconds), sampled at frequency 44,100 Hz. An audio fragment was
acquired at first, starting at the inferred onset time Ios. Then, two additional audio frames
were acquired from the original signal, starting at Ios − 512 and Ios + 512. In practice,
we translated the acquired window signal back and forward in time and, this way, we
accomplished data augmentation with a factor of 3×. This process is illustrated in Figure 6.

This innovation in our CGP systems is useful to enlarge the number of positive cases
on the training dataset and consequently allows us to enlarge the number of negative
original cases maintaining the balance in the two classes. This way, we can train the
classifiers with a more extensive and diverse negative training datasets. Another important
advantage is that, this way, we also force the classifiers to learn and infer not only when
the onset detector is accurate but also when it does not estimate the onset time with high
precision (delays and advances).
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Figure 6. Data augmentation process using time translation—(a) in blue is the original piano signal
in the time domain (≈0.2 s), in black is the inferred onset location Ios, and in red is the extracted
frame, starting at Ios; (b) audio frame extracted from the original signal, starting at instant Ios − 512;
and (c) audio frame extracted from the original signal, starting at Ios + 512.

5.3. Preprocessing

One important decision in designing classifier systems is defining the inputs and
their structure. The original sound signals acquired from wave files are float vectors,
representing input audio signals in the time domain. However, the frequency domain
contains a lot of important information for multi-pitch estimation problems. As mentioned
in Section 1, the polyphonic signals can also be expressed as a sum of harmonic sources
plus a residual (Equation (1)). Thus, in the frequency domain, we have the information
we need about the Fundamental Frequencies (F0) that composes the acoustic input signal.
This stresses for a need for converting the input audio signal to the frequency domain. This
transformation is done by employing the discrete Fourier transform (Equation (6)). For
the preprocessing task, the three audio frames acquired in the data augmentation process
are windowed (Equation (4)) using an Hanning window function (Equation (5)) to avoid
spectral leakage. The windowing process is illustrated in Figure 7.

xw[n] = w[n] · x[n]. (4)

w[n] = 0.5
(

1− cos
(

2πn
N − 1

))
. (5)

The windowed audio frames are transformed from the time domain to the frequency
domain using discrete Fourier transform (DFT):

X[k] =
N−1

∑
n=0

xw[n]e−j( 2π
N )nk, (k = 0, 1, · · · , N − 1), (6)

In discrete time processing, DFT is typically computed using the fast Fourier transform
algorithm (FFT), which is much faster. We obtained the signal in the frequency domain
X[k] using Equation (6), where xw[n] is the windowed time signal and N is the number of
samples. Any time signal cannot be uniquely represented for frequencies above fs

2 (also
known as the Nyquist frequency), where fs is the sampling frequency of the sequence. Due
to the periodicity of the frequency domain signal resulting from DFT, period [0; fs], and
the Nyquist theorem where the symmetry of the real part and the anti-symmetry of the
imaginary part relative to Nyquist frequency, fs

2 , we use half of the resulting signal of the
DFT. Thus, from the resulting frequency signal representing in the frequency interval [0; fs]
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with a size of 4096, we can use only the first half represented in the interval [0; fs
2 ], with a

2048 length. The preprocessing process is illustrated in Figure 7.

Figure 7. Preprocessing—(a) acquired audio frame in the time domain, (b) Hanning window repre-
sentation, (c) windowed audio frame, and (d) windowed signal represented in the frequency domain
after applying the DFT.

5.4. Inputs

As depicted in Figure 8, our system uses 5 input vectors, all acquired from the sample
time vector. The vector X[k] resulting from Equation (6) is in the frequency domain and
is a vector of complex numbers. This lets us use two different vector representations of
complex numbers (z): cartesian (Equation (7)) and polar (Equation (8)).

z = a + bi (7)

z = r(cos θ + i sin θ) (8)

This way, we have a pair of vectors for each representation (2 components), making
4 usable inputs: a, b, r, and θ. An additional 5th input was added to the system: the signal
cepstrum. The cepstrum is a mathematical transformation used in audio signal processing,
in particular, for period estimation. Cepstral analysis is one of several methods that enables
us to find out whether a signal contains periodic elements. This way, cepstral information
can also be used to determine the pitch of a signal [57]. Cepstrum, c[n], is defined as the
inverse DFT of the log magnitude of the DFT of a signal:

c[n] = F−1{log|F{x[n]}|}, (9)

where F represents the DFT and F−1 is the inverse discrete Fourier transform (IDFT). For a
windowed frame audio signal x[n], the cepstrum is as follows:

c[n] =
N−1

∑
n=0

log
(∣∣∣ N−1

∑
n=0

x[n]e−j( 2π
N )nk

∣∣∣)j( 2π
N )nk

, (k = 0, 1, · · · , N − 1). (10)

The cepstral coefficients describe the periodicity of the spectrum. A peak in the
cepstrum denotes that the signal is a linear combination of multiples of the frequency pitch.
The pitch period can be found as the number of the coefficient where the peak occurs.
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Figure 8. System inputs for a chord with 3 pitches (70 + 75 + 94), bottom down—real part of DFT,
imaginary part of DFT, radius of DFT, angle of DFT, and real Cepstrum calculated from the time
domain signal. Only the first 500 of 2048 bins of all the 5 vectors are shown.

Regarding the importance of the cepstral information in pitch estimation, we use it
as our 5th system input. Figure 8 shows the 5 system inputs: four of them are directly
obtained from the DFT of the original input audio signal: real (a), imaginary (b), radius (r),
and angle (θ). The 5th input (c[n]) is obtained from the original sound and is represented
on a different scale (All the inputs are normalized to a max value of 1. The y scale of the
cepstrum graph is limited to 0.1). Due to the variety and redundancy of information, in
relation to the 5 inputs, we ensure that the CGP system has a variety of representations of
the same data, so that it can be able to choose the one that best fits to the problem.

5.5. Individual Encoding

Usually, Cartesian genetic programming contains three node types: input nodes,
function nodes, and output nodes. Our system has 5 input nodes and only one output
node for each classifier. We used a CGP, graph which is a grid of nodes with one row
and 100 columns. Thus, each individual will have a maximum allowance of 100 nodes,
which is a common value for this type of approaches [10]. Each function node contains
5 different genes (Figure 9). There is a gene that represents the function number (Fn) from
the pre-established function set. The next two genes encode the node inputs: they can
be the system inputs or the outputs of other nodes, and they are 2 because that is the
maximum arity of our function set. Finally, there are two genes for the real parameters (P1
and P2) used as parameters for correct work of the corresponding mathematical functions
from the function set. The Fn gene represents the function used by that node chosen from
the function set represented by a lookup table. Note that all the functions are prepared to
receive one or two vectors and that all of them return a vector. Our function set is almost
comprised by filtering operations on vectors and by arithmetic operations with constants
and vectors.
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Figure 9. Node genotype and its graphical representation. Node 6 has five genes: the first gene
(black) codifies the function from the function set table (value 4), the second and third genes (red)
are connection genes (values 3 and 1: node 3 output and node 1 output), and the fourth and fifth
genes (blue) are real parameters for function use (values 0.4 and 7.2).

Figure 9 also shows that there are two real parameters in the node genotype. These
parameters are useful for the functions, since each function uses at most 2 parameters
to accomplish its task. In fact, most functions need real parameters. However, the same
parameter has a different meaning and a different domain from function to function. To
avoid a tremendous increase in parameters and genes in each node, we used one real
parameter to represent constants and another one to represent a percentage of an interval.
This way, with only two additional genes, we managed to fulfill all function set needs.
As the same parameter may have one meaning and domain for one particular function
and another meaning and domain for another function, we normalized the domain of the
parameter P2 to a fix interval. Each function is responsible for mapping that fix interval to
the correct domain for its own purpose. The parameter p2 of each function with its own
range is normalized into [0; 1]: all intervals are transformed from [a; b] to a normalized
one [0; 1]. By using this technique, the actual value of any parameter can be seen as a
number between 0 and 1 or a percentage of the interval, and the mutation process becomes
standard and easier.

5.6. Mutation

Mutation process plays a fundamental role in the evolutionary process of Cartesian
genetic programming-based systems. Without crossover, mutation is the only process
responsible for the generation of new individuals in an offspring. The mutation process
depends on two different stages, ruled by different probability distributions functions:
the first stage decides if and which gene or genes will be mutated; the second stage
decides how these genes will be mutated. There is a configurable parameter, the mutation
probability that represents the probability of each gene undergoing a mutation. For instance,
p = 0.015 means that each gene will mutate with a 1.5% probability. Different mutations
are performed according to the gene type and domain: if a function gene happens to be
mutated, then a valid value must be chosen for selecting a new function in the function set
lookup table; if a mutation occurs in a gene node input, then a valid value is the output of
any previous node in the genotype or any system input; and the valid values for the system
output genes are the output of any node in the genotype or the address of a system input.
All these mutations happen according to the discrete uniform probability distribution
function for integers. Two additional genes can also mutate: the real parameters used by
the functions. These parameters are important because they are used by those functions to
perform specific tasks. According to each function, each parameter has a specific meaning
and has its own domain range. In this case, we use the normalized interval [0, 1] as the
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mutation domain. The mutation of real genes (function parameters) is done using the
normal distribution in order to address the entire range:

f (x) =
e−(x−µ)2/(2σ2)

σ
√

2π
, (11)

where f (x) represents the density function of an x variable, with a normal distribution.
This function is also represented as N(µ, σ), where µ is the mean and σ is the standard
deviation. To perform the mutation of a function parameter, Pold, we generated a new
random Pmutate using the normal distribution N(µ = Pold, σ), with σ being configurable in
our system. This way, we ensured that, when a mutation occurs on a real parameter, all
parameter intervals are reachable but with higher probability to mutate to closer values.

For better performance, we maintained a list of active and inactive genes and, when
there is no mutation in one of the active genes, the fitness function is not computed.

5.7. Evolutionary Strategy

The evolutionary strategy widely used for CGP is a special case of the µ + λ [58],
where µ = 1 (see Algorithm 2).

Algorithm 2 Algorithm ((1 + λ)EA).

1: t← 0;

2: Set current individual I0 as the best of λ individuals created randomly;

3: while a stop condition is not fulfilled, do

4: for i = 1 to λ do

5: Create a copy xi of current individual It;

6: Mutate each gene of xi with probability p;

7: end for

8: Set new current individual It+1 as the best of It ∪ {x1, . . . , xλ};

9: t← t + 1;

10: end while

This means that, in this special case, the population size is always 1 + λ. First, we
select the best from λ randomly created individuals. Then, at each iteration (generation),
λ new individuals are generated by applying mutations on the individual previously
selected as the best among the population. Then, the best among the current individuals
(1 + λ) becomes the current individual for the next iteration (generation). An offspring
can become the current individual in the next iteration when it has the same fitness as
the current individual and there is no other individual with a better fitness. According to
Goldman [59], an empirical value for λ is 4, which was the value we used.

5.8. Binarization

Our CGP system architecture evolves one classifier for each piano note. The final
output of each classifier should be a binary output: when the corresponding note is
detected, the output is 1; otherwise, it is 0. In order to evolve each classifier, there is a
training stage (see Section 5.1). During this stage, each generated individual for each
classifier is evaluated using a fitness function. To compute the fitness value, we use F-
measure, which is a measure of a test’s accuracy for binary classification. Therefore, for
each audio frame used as input, we need to generate a binary output for each classifier.
However, our CGP system is comprised of mathematical functions in which the arguments
are vectors and that also return vectors. Thus, at the end of each CGP graph (output node),
we have a vector of float values. A binarization process was added at the end of each
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classifier to transform its output vector into a binary output. This was done by applying a
spectral mask with harmonic information: each classifier uses its own mask built by the
system. The fundamental frequency of the corresponding note detected by the classifier (F0)
is computed and 2 or more triangles are placed centered in n× F0 (see Figure 10b); in this
case, we use a harmonic mask parameter n = 2. This means that we use 2 triangles (n = 1
and n = 2). The amplitude and width of each triangle are also configurable parameters
as well as the number of harmonics. To calculate F0 for a piano note (key), we use the
following equation that gives the fundamental frequency F0(n) of the nth key:

F0(n) = 440× 2
n−49

12 Hz, (12)

Figure 10. (a) CGP output signal, (b) harmonic mask, and (c) computing intersection.

In order to accomplish a binary output, we use a comparison process between the
CGP output vector normalized in amplitude Ocgp[n] and the spectral harmonic mask
with the frequency corresponding to the pitch of the estimator, MF0[n]. The first step is
normalization of the output vector in amplitude. This way, all the elements of the vector fall
in the interval [0; 1]. Then, we generate the following scalar computing the inner product
between the 2 vectors:

x =
N

∑
n=0

Ocgp[n]×MF0[n], (13)

where x measures the discrete intersection between two discrete signals. If we approximate
these signals to a continuous domain, we could see x as the intersected area between the
two signals.

Finally, we use a threshold function to accomplish the binary result:

T(x) =

{
1, if x > θ

0, if x <= θ
(14)

where θ is the threshold value. Since both signals are normalized, the max value for x is
as follows:

xmax =
N

∑
n=0

MF0[n]. (15)
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This threshold value also evolves (mutates) during the training stage. This way, be-
sides the node genes, the threshold may also adapt to reach better fitness. The threshold
mutation probability is configurable and was empirically set to the same mutation proba-
bility of the other genes. When the system decides to mutate the threshold, its mutation
values are ruled by the normal distribution N(µ = θold, σ), which is confined to the interval
[0; xmax]. The new threshold depends on the old threshold, that is, the mean of the normal
probability distribution that generates the new value.

5.9. Fitness Evaluation

Thanks to the binarization process, each CGP generated graph can act as a classifier
and dictate whether the corresponding piano key is present on the input audio signal. This
way, during the evolutionary training process, each classifier can be evaluated according
its classification. This evaluation is done using F-measure (Equation (16)).

Fmeasure = 2× recall × precision
recall + precision

, (16)

where
precision =

tp
tp + f p

, recall =
tp

tp + f n
. (17)

The main goal of the training or evolutionary process is to maximize the Fmeasure in
order to reach the most accurate classifier.

6. Experiments and Results

To make a detailed study about the quality of the proposed system results, we made
several experiments. The main goal was to evolve 61 classifiers during the training stage,
each one for the correspondent piano key, from C2 (MIDI note 36) to C7 (MIDI note 96).
Each piano key is represented by the corresponding MIDI note number, with 60 being the
MIDI note number corresponding to the C4 musical note (middle C).

To train and test our system, we used the MAPS (MAPS stands for MIDI-Aligned
Piano Sounds, and it is available for use under previous request.) database [56]. It is
a piano sound database dedicated to research on multi-F0 (multi-pitch) estimation and
automatic music transcription. It contains piano sound samples of polyphonic and mono-
phonic sounds, usual chords, and random chords played by 7 different pianos in different
recording conditions.

Throughout this section, we describe all the steps we performed to test our proposal
and their advantages. We started by (i) training and testing some classifiers using the K-fold
cross validation method to estimate the skill of our machine learning model on unseen data.
Then, (ii) we expanded the experiments to train the CGP system evolving all 61 classifiers.
To obtain a comparative base with other algorithms, we tested our system composed by
the 61 classifiers previously trained with a larger amount of polyphonic piano sounds:
3000 random chords and monophonic notes from seven different pianos. We extended the
experiments to other musical instruments (iii), such as an electric guitar. We also tested (iv)
the time performance of our CGP system. Finally, (vi) we decoded one classifier to show
the mathematical expressions and functions resulting from the evolutionary processes and
the possibility of white-box optimization.

6.1. Validating the Proposed Methodology

Cross-validation is a model validation technique for assessing how the results of a
statistical analysis are able to generalize to a different daset. It is mainly used in settings
where the goal is prediction or classification and to estimate how accurately a model will
perform in practice. We used a 5-fold cross-validation with folds of 100 cases, corresponding
to a 500-case dataset for 10-pitch classifiers, randomly chosen. For a specific classifier, we
built a dataset with 500 cases, 250 positive cases, and 250 negative cases to obtain a balanced
dataset. All of them were extracted from the MAPS database, where there are monophonic
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sounds (polyphony 1) and polyphonic sounds, from polyphony 2 to polyphony 6. All the
chords were extracted from the random chords subset, which contains random-pitched
chords from C2 to B6 uniformly distributed. These chords are composed by random
notes without any music rules, such as harmoncity and musical consonance. Training the
classifiers with random-pitched chords is an important characteristic because, this way, the
evolved classifiers will neither be constrained to any type of music, for example, western
music nor be constrained to any music rules.

We trained each of the ten classifiers using 4 folds and tested it with the remaining
fold, and we repeated this process for the five combinations of 4 folds. For each of the
training and test processes, we computed 10 runs. The k-fold cross-validation and the
configurable parameters of our proposed CGP system used are presented in Table 1. The
evolutionary process consisted of 10 runs with 10,000 generations each, using 200 positive
and 200 negative cases for each fold combination.

Table 1. The 5-fold cross-validation parameters trained/tested.

Parameter Value

K-folds 5

Data Augmentation 3

Positive Test Cases 250

Negative Test Cases 250

Frame Size 4096

Fitness Initial Threshold 1.5

Outputs 1

Rows 1

Columns 100

Levels Back 100

λ (E.S. 1 + λ) 4

Mutation Probability 5%

Threshold Mutation Probability 6%

Harmonic Mask 2

Runs 10

Generations 10,000

For individual encoding, we used one row with 100 nodes. The “harmonic mask”
value was empirically set to 2: the CGP system was prepared using a harmonic mask from
the first harmonic to the fifth harmonic. “Data augmentation” was set to 3, which means
that, for each initial sound file, we generated 3 different ones with time translations forward
and backward. The evolutionary process consisted of 10 runs with 10,000 generations each,
using the 5-fold dataset division for training and test. The classifiers were evaluated using
the F-measure metric, explained in Equation (16).

Figure 11 shows the 5-fold cross-validation results. The mean value (µ) for F-measure
is 0.93 with 0.91 of precision and 0.93 of recall; these values have standard deviations (σ) of
0.027, 0.025, and 0.025, respectively. These values prove that our CGP-based technique is
able to learn.
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Figure 11. Results of 5-fold cross-validation for ten classifiers, using 500 cases dataset, half positive
half negative. Precision (µ = 0.91, σ = 0.027), recall (µ = 0.95, σ = 0.025), and F-measure (µ = 0.93,
σ = 0.025).

6.2. Classifier Training

After demonstrating the quality of our machine learning-based system in the previous
section, using the 5-fold cross-validation for a set of classifiers, we had to train all of the 61
pitched-based classifiers in a way to obtain the best possible results for the testing stage.
Thus, we performed complete training for all 61 different piano keys to evolve the 61
classifiers. We used a bigger dataset for the training process, consisting of 600 cases of
monophonic and polyphonic sounds extracted from the same database used before. The
CGP system parameters are identical to those in Table 1 except the number of runs per
classifier, which we increased to 20. Therefore, each classifier uses a set of 600 cases, 300
positive case, and 300 negative to evolve 10,000 generations.

Figure 12 shows that the mean F-measure calculated over all the 61 classifiers is 0.95
with σ = 0.024. These are training results, as usually we obtained high values for all 3
measures computed. This trained classifiers will be tested below on a bigger dataset to
obtain the final test results and for comparison with other state-of-the-art algorithms.

Figure 12. Results of the overall training stage for 61 classifiers. Precision (µ = 0.92, σ = 0.029), recall
(µ = 0.97, σ = 0.026), and F-measure (µ = 0.93, σ = 0.024).

6.3. Testing

The cross-validation process results gave us an idea about the quality of the classifiers.
However, the important and comparable results are those obtained in the test stage. For
the test phase, we used the classifiers evolved during the training stage to identify the
presence of their corresponding pitches in monophonic and polyphonic audio files. We
measured the quality of the classifiers by testing them with a different dataset: the test
set. The test set for each classifier consisted in 3000 piano audio files of chords and single
notes extracted from the MAPS database [56], corresponding to almost 5 min of music:
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3000 random pitched chords and single notes between C2 (65.406 Hz) to C7 (2093.0 Hz),
with polyphony levels ranging from 1 to 6. For each sound, a single 93 ms frame located
after the onset time was extracted. The test results are illustrated in Figure 13.

Figure 13. Results of the overall testing stage for 61 classifiers. Precision (µ = 0.72, σ = 0.08), recall
(µ = 0.82, σ = 0.036), and F-measure (µ = 0.764, σ = 0.06).

We accomplished a final F-measure value of 0.76 (76%). As expected, these are slightly
lower results when compared to the values obtained during the training stage. However,
they are very competitive in the MPE context. We also calculated the accuracy using
F-measure for each polyphony from 1 to 6 during the test process. Our system returns
F-measures in percentages of 77%, 79%, 77%, 73%, 69%, and 66% for polyphony (Polyphony
0 corresponds to silence, easily detected by an analytic power spectrum analysis.) 1, 2, 3, 4,
5, and 6, respectively (Figure 14). Our CGP system presents higher F-measure values for
polyphony 2 and 3, and then, it decreases until polyphony 6, with a 13% gap between the
top and bottom polyphony F-measure values.

Figure 14. Polyphony test results from polyphony 1 (monophonic) to polyphony 6 for precision,
recall, and F-measure.

The entire database includes sounds from seven different pianos. Analysing the
results by piano, we have about 4% standard deviation. This means that our system
accuracy does not significantly depend on piano differences, recording conditions, or
whether a real piano or a software-based one is used, which suggests robustness for
varying production conditions.

Our final results are expressed in Figure 13. These are the results obtained for each of
the improvements we applied. Previous versions and several improvements were made
since we initially proposed our toolbox for CGP [48] until this last version called CGP-
harmonic mask (HM)-DA. All the previous published results are shown in Figure 15. Our
first F-measure result was 62.7% using CGP-1 [46,48]. We improved our system using a
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harmonic mask, CGP-HM, in [49]; later, some functions were added to the function set
and minor improvements were made, CGP-HM2 [60], resulting in a better F-measure, 73%.
Finally, we were able to extend the training set using a artificial data augmentation process,
CGP-HM-DA, producing our best results described in this article, reaching F-measure
values over 76%.

Figure 15. Our CGP system versions: from CGP-1, our first approach, to CGP-harmonic mask
(HM)-data augmentation (DA), the last version, and it is the described approach with harmonic mask
and data augmentation. Results from 62.7% to 76.6%.

Our training stage consumes a lot of time: to train 10 runs with 10,000 generations
using a multi-core (4 core) processor, it takes more than a day. Nevertheless, for some
classifiers, we performed additional tests increasing the number of generations to 20,000.
Unfortunately, we did not have the necessary time or the computer resources to completely
train with 20,000 generations for all the classifiers. Our preliminary results show a mean
increase in F-measure of 1.2%.

6.4. White-Box Optimization

Many machine learning algorithms were proven to successfully accomplish their tasks.
However, some of them featured “opacity”: they do not provide information about how
they do it in an analytic way and were thus labelled as black box. Our CPG multi-classifier
system is completely transparent. It is known that each classifier is composed by a graph
of nodes, where each node is essentially a mathematical function from a defined function
set. Thus, we can pick any evolved classifier, decode it, and analyze its readable function
graph or mathematical expression. This provides a white-box analysis. Using classifiers as a
white box has several advantages. Among them, two stand out: one is the possibility to
learn from the classifiers obtained, by checking what mathematical functions and inputs
are used to make a classification; the second is the possibility to optimize the classifier,
tuning the constant values used by the encoded functions.

Figure 16 shows one of the evolved classifiers, classifier 55, which as a F-measure of
(95%). Looking at our classifier, the output is computed by a sum (last node) of the resulting
expressions: one uses a Gaussian filter of two different normalizations of the cosine of I4
that is the angle of the DFT of the sound signal, and the other branch of the graph uses
two consecutive sines of I3, which is the radius of the number of DFTs. Among all the
functions, “SPGaussFilter” executes a sliding window filtering process using a Gaussian
function. This function uses a real parameter to design the Gaussian filter. That parameter
is the standard deviation (σ). Therefore, a good start to optimizing this classifier could be
tuning this real constant value.
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Figure 16. Resulting graph after decoding the genotype of classifier 55. The rectangles are functions
from the function set, the circles are inputs, and the bold one is the output. In grey are the nodes that
are not used to calculate the output due to the arity of some functions.

The evolved classifiers are diverse as well as the functions used, although there are
almost always functions that use one or two real parameters. Our function set is detailed
in Table A1 in Appendix A.

6.5. Comparing to Other Approaches

Although there is a lack of evolutionary approaches on multi-pitch estimation prob-
lems in the literature, specially using genetic programming and with multiple independent
classifiers, we compare our results with 4 different state-of-the-art algorithms for MPE of
piano. These were the algorithms that were tested previously by Emiya [27] in the same
conditions as ours: MPE for random chords using the MAPS database including all pianos,
artificial and real.

The 4 algorithms were tested on the same database for comparison purposes. The first
one was Tolonen’s multipitch estimator [20]. As the performance of the algorithm decreases
when F0s are greater than 500 Hz (C5), the system was additionally tested in restricted
conditions—denoted Tolonen-500—by selecting from the database the subset of sounds
composed of notes between C2 and B4 only. The third was Emiya [27]. The fourth one was
Klapuri’s system [15], for which we also had access to the code provided by the author
and which was upgraded later [22]. The overall results shown in Figure 17 demonstrate
that our system reaches 76% in F-measure, being the third best in quality, only behind
Emiya with 80% and Klapuri with 82%. Tolonen reached 47%, and Tolonen-500 reached
61%. These results confirm the suitability of the technique we employed. Moreover, as we
will show below, our algorithm is able to go beyond piano and has some unique features
that stand out.

Figure 17. F-measure results comparison in (%) with state-of-the-art algorithms: Tolonen, Tolonen-
500, Emiya and Klapuri. Our proposal is referenced to as CGP and it is the last version of our
algorithm, CGP-HM-DA.

We are aware that there are more recent state-of-the-art algorithms with salient pub-
lished results, such as [23]. However, these recent algorithms were designed and prepared
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to perform music transcription, and they encapsulate the process of multi-pitch estima-
tion. Moreover, those were trained and tested in different conditions and, thus, cannot be
compared with our approach.

6.6. Reaching for the Piano and Beyond

Our main task was to develop a multi-classifier system strong and flexible enough
that it can be tested with piano music and then easily extended to other instruments. After
the exhaustive study on MPE for piano music, we extended our experiments to other
instruments, starting with an electric guitar (Figure 18).

Figure 18. F-measure results for MPE on 2 different instruments: for piano, the F-measure is 76%,
and for guitar, it rises to 83%.

We used a dataset with 400 guitar chords and single notes extracted from the guitar
database, IDMT-SMT-GUITAR [61]. Seven different guitars in standard tuning were used
with varying pick-up settings and different string measures to ensure a sufficient diver-
sification in the field of electric guitars. The results depicted in Figure 18 show that the
F-measure for guitar reaches 83%, which is even better than the piano results. This way,
we proved that our proposed multi-classifier system-based CGP has the ability to perform
MPE for other musical instruments besides piano, with even better results.

6.7. Discussion

To discuss the quality of our proposal we have to look beyond the accuracy results.
Besides the F-measure results, which have demonstrated the competitiveness of the ap-
proach not only for piano but also for electric guitars, there are a set of features that should
be considered when a machine learning technique must be selected for solving a problem.
We summarize some of these desirable features in Table 2.

Table 2. The algorithm’s main features.

Algorithm Real-Time Other Instruments White Box Piano FM (%) Guitar FM (%)

Tolonem
√

x x 47% -

Tolonen-500
√

x x 61% -

CGP
√ √ √

76% 83%

Emiya x
√

x 80% -

Klapuri x
√

x 82% -
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Our CGP algorithm for MPE is unique in terms of the technique used to address the
problem we face. It is the first one that embodies genetic programming and a distinctive
architecture with multiple classifiers that can work independently and in parallel. As far as
we know, there is no other approach for this kind of problem with a similar multi-classifier
architecture. In fact, our architecture is highly parallelizable: since the evolved classifiers
are independent, they can run in parallel. Our system has been preliminary tested on a
8 core processor and, due to its parallelization capabilities, it works in real time. Therefore,
as shown in the table, our CGP-based approach is among real-time techniques that provides
the best F-measures.

We easily extended our CGP system to other instruments with accurate results. We
trained and tested our system for electric guitars and we reached an outstanding 83%
F-measure. This suggests that this is the only real-time technique developed for piano that
may be applied without changes to any instrument. Although we have successfully tested
it for a guitar, we hope the results will be positive with other instruments, given that, after
piano, the guitar is another instrument with a high polyphony degree.

One of the most important features that stands out from our system is the white-box
method that allows us to study the solutions provided by avoiding opacity and by allowing
future improvements based on what we can learn. Again, this is the only technique among
state-of-the-art techniques featuring white-box optimization.

Summarizing, as shown in Table 2, the CGP-based system is the only one that pro-
vides a real-time approach, provides white-box optimization, is easily extendable to other
instruments, has competitive F-measure for piano music, and has outstanding F-measure
values for guitar music.

7. Conclusions and Future Work

We proposed in this paper a multi-pitch estimation system for piano music based
on Cartesian genetic programming using an harmonic mask and improved with a data
augmentation process for a better training stage.

We presented a detailed description of all the system features, which perform multi-
pitch estimation using Cartesian genetic programming, harmonic masks, and a data aug-
mentation process. We also introduced an onset detection analytic algorithm to aid the
system working process.

The main disadvantage of our proposal is the fact that one first needs to evolve the 61
classifiers, so that the system is able to employ those classifiers to perform transcription
and so that the training (evolutionary) process takes time: each single classifier takes one
day to train (ten runs). However, our technique produces competitive results for any
type of piano sound without the need for harmony rules for chords construction. This
way, it is more generalized and works with random notes, which could be of interest for
contemporary music. Moreover, we have also shown that the methodology can be applied
without changes to other polyphonic instruments, such as the guitar.

The CGP-HM-DA approach based on a graphs of nodes with functions extracted from
a dataset can be easily decoded once the classifiers are evolved for a given instrument: the
classifiers are made up of mathematical expressions with inputs, internal functions, and
outputs, which provide white-box optimization.

The results are shown and compared with state-of-the-art algorithms, and we demon-
strated the feasibility of the approach: this technique is the only one providing simultane-
ously (i) competitive results (F-measure) together with (ii) real-time capabilities thanks to
their intrinsic parallel nature; (iii) white-box optimization; (iv) and direct application to
other polyphonic instruments with outstanding results (F-measure).

Future work will focus on demonstrating the capabilities of the proposed system on
other types of pitched instruments, namely woodwind and string ensembles. We also look
forward to proposing a similar system for non-pitched instruments, such as the drums.
Given the parallel nature of our approach and its ability to perform in real-time, we also
aim to implement a real-time improvisation music composition system, using the proposed
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algorithm as the system input. Here, the goal is to create a system that is capable of
interacting through its music and to play with other musicians.
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Abbreviations
The following abbreviations are used in this manuscript:

AMT Automatic Music Transcription
MIR Music Information Retrieval
MIDI Musical Instrument Digital Interface
CGP Cartegian Genetic Programming
MPE Multi-Pitch Estimation
EA Evolutionary Algorithm
CGP4Matlab Cartesian Genetic Programming for Matlab
DFT Discrete Fourier Transform
IDFT Inverse Discrete Fourier Transform
FFT Fast Fourier Transform
STFT Short Time Fourier Transform
HM Harmonic Mask
DA Data Augmentation

Appendix A. Function Set

Our function set contains 27 different functions with arities 1 and 2. The functions
may use a maximum of 2 real parameters. This function set is composed by arithmetic
functions, filtering functions, and transforms. It was used in all of our experiments.
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Table A1. Function set lookup table.

Index Function Description

1 SPAbs Absolute value

2 SPBPGaussFilter Band-pass Gaussian filter

3 SPCceps Cepstrum transform

4 SPConvolution Convolution

5 SPCos Cosine

6 SPDivide Point-to-point Division

7 SPEnvelopeHilbert Hilbert envelope

8 SPFFT Absolute value of the DFT

9 SPGaussfilter Gaussian filter

10 SPHighPassFilter High-pass filter

11 SPIFFT Absolute value of inverst DFT

12 SPLog Natural logarithm

13 SPLog10 Common logarithm

14 SPLowPassFilter Low-pass filter

15 SPMedFilter Median filter

16 SPMod Remainder after division

17 SPMulConst Multiplication by constant

18 SPNormalizeMax Normalization maximum

19 SPNormalizeSum Normalization sum

20 SPPeaks Find peaks

21 SPPowe Power

22 SPSin Sine

23 SPSubtract Subtraction

24 SPSum Sum

25 SPSumConst Sum with a constant

26 SPThreshold Tresholding

27 SPTimes Multiplication
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