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ABSTRACT
This paper presents a new method for multi-pitch estimation on pi-
ano recordings.We propose a framework based on a set of classifiers
to analyze the audio input and identify the piano notes present on
the given audio signal. Our system’s classifiers were evolved using
Cartesian Genetic Programming: we take advantage of Cartesian
Genetic Programming to evolve a set of mathematical functions that
act as independent classifiers for piano notes. Our latest improve-
ments are also presented, including test results using F-measure
metrics. Our system architecture is also described to show the
feasibility of its parallelization and implementation as a real time
system. The proposed approach achieved competitive results, when
compared to the state of the art.
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1 INTRODUCTION
Multi-pitch estimation is the process of identifying the musical
notes (pitches) on polyphonic audio. It consists on estimating the
pitch values of all concurrent sound sources (musical instruments)
at each individual time frame and plays a fundamental role on the
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process of Automatic Music Transcription (extracting the instru-
ment’s score of a given music or audio signal). Automatic Music
Transcription is a very difficult problem from both musical point of
view and computational point of view: although there has been a
lot of research devoted to it, it still remains unsolved. To tackle this
problem, we have considered evolutionary algorithms, in particular,
Genetic Programming (GP) methodology. Among all the GP vari-
ants available, we decided to innovate and use Cartesian Genetic
Programming (CGP), which was first presented by Miller in [14]
as a general form of genetic programming. This form of Genetic
Programming is called “Cartesian” because it represents a program
using a two dimensional grid of nodes.

Cartesian Genetic Programming has already proved its abilities
for synthesizing complex functions capable of extracting main fea-
tures from images and performing image segmentation [5]. Given
its success on image processing, we decided to apply CGP on audio
processing, with the objective of detecting and recognizing piano
notes or pitches on polyphonic sounds. We started our research
with this goal in mind and, to address this problem, and also future
problems related to audio signal processing, we created a CGP tool-
box for Matlab [15]. With the help of this toolbox, we defined an
architecture for a classification system based on CGP. Our proposed
system is composed by multiple and independent classifiers each
one containing an evolved mathematical expression with multiple
mathematical functions and filters and is first described in [6]. The
evolved classifiers resulting from the CGP system are capable of
identifying the presence of any piano key in a polyphonic sound
sample and work independently: they can run in parallel. This is
the primordial task of an automatic music transcription system,
that can be used on a sequential frame based approach or using
onset and offset detection for note tracking.

This paper is the result of our continuous research on multi-pitch
estimation of piano music and describes our current architecture
and special features as well as our results, in what concerns to
accuracy and time performance. Thus, this paper explains the latest
achievements in our CGP system due to the continuous improve-
ments as well as the new features and techniques added that lead us
to significantly improved results. The rest of this paper is organized
as follows: Section 2 explains the related work. Section 3 presents
the Cartesian Genetic Programming features, Section 4 explains our
approach and on Section 5 we show our experiments and results.
Finally, on Section 6 we present our conclusions and future work.
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Figure 1: Overall structure of a CGP program. Program in-
puts and computational nodes are numbered sequentially.
The program outputs can link to any computational node
or program input.

2 RELATEDWORK
Multi-pitch estimation has been addressed by several researchers
using different approaches. Klapuri [7], proposed an iterative ap-
proach algorithm, based on harmonicity and spectral smoothness.
Marolt [10], proposed a connectionist approach using a network
of adaptive oscillators to detect periodicities on the audio signal,
along with a partial tracking technique based on an auditory model,
which converts the acoustic signal into time-frequency space. Yeh
et al. [22] presented an algorithm based on the short-time Fourier
transform (STFT) representation, using an adaptive noise level esti-
mation algorithm with harmonic matching. Reis et al. [19], used a
genetic algorithm approach which relies on an adaptive spectral
envelope modeling and dynamic noise level estimation. Benetos
and Weyde [16], based on probabilistic latent component analysis
and supporting the use of sound state spectral templates, proposed
an efficient, general-purpose model for multiple instrument poly-
phonic music transcription. However, currently state of the art
approaches still fall behind the most skilled musicians. Multi-pitch
estimation, is a problem that yet remains to be solved. Also, among
the evolutionary approaches in the literature [19–21], real-time
processing is beyond the scope of those algorithms. Which lead
us to the following motivation: improve results, but also to devise
a solution that allows evolutionary algorithms to reach real-time.
Thus, being competitive and useful for commercial applications.

3 CARTESIAN GENETIC PROGRAMMING
Cartesian Genetic Programming was proposed by Julian Miller in
2000 [14] and is an efficient form of Genetic Programming [8, 9]
with increasing popularity. In its classic form, it uses a very simple
integer notation to represent a program in the form of a directed
graph. Graphs are very useful program representations and can
be applied to many domains like, for example, electronic circuits
and neural networks. CGP Programs have three major components:
program inputs, computational nodes and program outputs, as
depicted in Figure 1. The genotype is a list comprised mostly of
integers that represent the program primitives and how they are
connected together (see Figure 2). Programs are represented as
graphs in which there are non-coding genes. We use three different
types of genes:
• connection genes, which are employed for connections be-
tween nodes inputs and outputs;

• function genes, which are in charge of specifying the func-
tions from a function set;
• additional parameters: required by the functions.

This representation is very simple, flexible and useful for many
types of problems. The general form of a CGP graph is shown
in Figure 2. Typically, all functions have as many inputs as the
maximum function arity and unused connections are ignored.

Figure 2: A CGP exmaple: Genotype and corresponding
schematic Phenoty. It is a grid of nodes connected as a graph
whose functions are chosen from a set of primitive func-
tions. There are 2 inputs and 4 outputs. The grid has 𝑛𝑐 = 3
(columns) and 𝑛𝑟 = 2 (rows).

CGP is called “Cartesian” because it considers a grid of nodes
that are addressed in a cartesian coordinate system. Each node
may contain additional genes for encoding additional parameters
that might be necessary for specific functions, like, for instance, a
threshold value. As in any evolutionary algorithm, each individual
encodes a possible solution to the problem being addressed. The set
of individuals is called the population. To evaluate the quality of
each individual or solution, a fitness function is used. This way, all
the solutions among the population are evaluated and the current
best solution is found. The next population (next generation) is then
generated, based on the current best individual. The next generation
contains a new set of possible solutions and becomes the current
population. This process is repeated over and over, from iteration
(generation) to iteration. This way, the quality of the population
improves (evolves) from generation to generation, pursuing the
best solution to the problem.

Algorithm 1 General CGP Algorithm
1: Generate initial population at random (subject to constraints)
2: while stopping criterion not reached do
3: Evaluate fitness of genotypes in population
4: Promote fittest genotype to new population
5: Fill remaining places in the population with mutated versions of

the fittest
6: Return to step 2 until stopping criterion reached
7: end while

CGP algorithm, shown in Algorithm 1, begins with the gen-
eration of the initial population. Then, a fitness function is used
to evaluate the quality of each individual in the population. The
evolutionary strategy chooses the fittest one (best individual) and
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Figure 3: System workflow: 5 inputs extracted from audio
sample signal, and 61 classifiers working in parallel gener-
ating 61 binary outputs

promotes it directly to the next generation. The remaining places
in the population are filled with mutated versions of the fittest indi-
vidual. The algorithm stops when the stopping criterion is reached.

4 PROPOSED CGP SYSTEM
A CGP encoded individual, in its general form, consists of a grid
of nodes, where each node has connections and also a function
chosen from a set of primitive functions. The grid has 𝑛𝑐 (columns),
𝑛𝑟 (rows) and 𝑙𝑒𝑣𝑒𝑙𝑠-𝑏𝑎𝑐𝑘 : how many previous columns of cells
may have their outputs connected to a node in the current column
(see Figure 2). Depending on 𝑛𝑟 , 𝑛𝑐 and 𝑙𝑒𝑣𝑒𝑙𝑠-𝑏𝑎𝑐𝑘 , a wide range
of graphs can be generated. When 𝑛𝑟 = 1 and 𝑙𝑒𝑣𝑒𝑙𝑠-𝑏𝑎𝑐𝑘 = 𝑛𝑐 ,
arbitrary directed graphs can be created with a maximum depth.
Choosing these parameters imposes the least constraints. Therefore,
this is the best and most general choice [13].

In our system, each piano note is identified by a CGP evolved
classifier (see Figure 3). This way, for identifying 61 musical notes
(from the C2 to the C7), we need to have 61 evolved classifiers: one
for each musical note or piano key. Each one of these classifiers uses
several inputs, all of them deriving from an acquired audio signal
and returns one binary output, indicating if the corresponding piano
note is present or not in the given signal. Basically, a sound vector
is sampled, using the onset detector proposed by Martins [11] with
some improvements [19]. Then, 5 inputs are computed from the
original sound vector using several signal processing techniques.
These inputs are then used by the classifiers to accomplish an output
vector. This vector suffers a binarization process to obtain a final
binary output.

4.1 Training
To develop a classifier system, the first stage consists in the train-
ing of the system classifiers. The training process of our system
is described in Figure 4: first, some preprocessing (see section 4.2)
is applied on the input audio signal to generate the inputs for all
the classifiers; these inputs, a function set and a set of parameters
are used in the CGP block, where the classifiers are evolved inde-
pendently using the CGP toolbox; during this evolutionary process,
each classifier generates an output vector; this output vector suffers
a binarization process to obtain a final binary output; then, a fitness
function is computed to evaluate the quality of the corresponding
classier using F-measure. The engine of the implemented evolution-
ary process is the CGP block: it is responsible for the evolutionary

Figure 4: System architecture

process that is done during the training stage to accomplish one
final classifier: a graph of mathematical functions, capable of de-
tecting the presence of the sound produced by a piano key. This
task was implemented using our Matlab Toolbox: CGP4Matlab [15].
This toolbox was developed for solving signal and image processing
problems with CGP, it is open source and available for general use.1

Many decisions and processes had to be made and implemented
besides the CGP. We had to apply some preprocessing (section
4.2) to the system inputs, had to figure out which inputs to use
and how to represent them (section 4.3). We also had to create a
gene encoding (section 4.4). Then, we had to decide what kind of
mutations (section 4.5) and which evolutionary strategy (section
4.6) to use as well.We also developed a binarization strategy (section
4.7) for the output and fitness (section 4.8) computation.

4.2 Preprocessing
One important decision in designing classifier systems is defining
the inputs and their structure.

The original sound signals acquired from wav files are float vec-
tors, representing the input audio signals in time domain. However,
the frequency domain contains a lot of important information for
multi-pitch estimation problems.

As mentioned by Yeh et al. [22], the polyphonic signals can also
be expressed as a sum of harmonic sources plus a residual2:

𝑥 [𝑛] =
𝑀∑

𝑚=1
𝑥𝑚 [𝑛] + 𝑧 [𝑛], 𝑀 > 0 with 𝑥𝑚 [𝑛] ≈ 𝑥𝑚 [𝑛 + 𝑁𝑚] (1)

where 𝑛 is the discrete time index, 𝑀 is the number of harmonic
sources, 𝑥𝑚 [𝑛] is the quasi-periodic part of the 𝑚th source, 𝑁𝑚

represents the period of the 𝑚th source and 𝑧 [𝑛] is the residual.
Thus, in frequency domain we have the information we need about
the Fundamental Frequencies (F0) that compose the signal. This
stresses for a need of converting the input audio signal to the
frequency domain. This transformation is done by employing the
Discrete Fourier Transform (see Equation 4).

The piano input signals are vectors in discrete time, sampled at
a rate of 44100 samples per second. For the preprocessing task, we
split each piano sound signal into frames of 4096 samples width,
corresponding to 93 milliseconds of sound. Those frames can be
acquired manually or according to a criteria, such as a threshold or
onset detector.
1Github download link: https://github.com/tiagoinacio/cgp4matlab
2The residual - 𝑧 [𝑛] - comes from components that are not explained by the sinusoids,
for instance, the background noise, spurious components or non-harmonic partials.
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Figure 5: preprocessing process: (a) input time signal, (b)
Hanning window, (c) resulting windowed signal (d) fre-
quency domain signal after DFT

Each audio frame is then windowed (see Equation 2) using an
Hanningwindow function (see Equation 3) to avoid spectral leakage.
The windowing process is illustrated in Figure 5.

𝑥𝑤 [𝑛] = 𝑤 [𝑛] .𝑥 [𝑛] . (2)

𝑤 [𝑛] = 0.5
(
1 − cos

(
2𝜋𝑛
𝑁 − 1

))
. (3)

The windowed audio frames are transformed from the time domain
to the frequency domain using the Discrete Fourier Transform
(DFT):

𝑋 [𝑘] =
𝑁−1∑
𝑛=0

𝑥𝑤 [𝑛]𝑒−𝑗 (
2𝜋
𝑁 )𝑛𝑘 , (𝑘 = 0, 1, · · · , 𝑁 − 1), (4)

In discrete time processing, the DFT is typically computed us-
ing the Fast Fourier Transform algorithm (FFT), which is much
faster. We obtain the signal in the frequency domain 𝑋 [𝑘], using
Equation 4 where where 𝑥𝑤 [𝑛] is the time signal windowed and
𝑁 is the number of samples. Any time signal cannot be uniquely
represented for frequencies above 𝑓𝑠

2 (also known as the Nyquist
frequency), where 𝑓𝑠 is the sampling frequency of the sequence.
Due to the periodicity of frequency domain signal resulting of a
DFT, period [0; 𝑓𝑠 ], and the Nyquist theorem where the symmetry
of the real part and the antisymmetry of the imaginary part relative
to Nyquist frequency, 𝑓𝑠

2 , we may use half of the resulting signal
of the DFT. Thus, from the resulting frequency signal representing
in the frequency interval [0; 𝑓𝑠 ] with size of 4096, we can use only
the first half represented in the interval [0; 𝑓𝑠2 ], with a 2048 length.
The preprocessing process is illustrated in Figure 5.

4.3 Inputs
As depicted in Figure 3, our system uses 5 input vectors, all acquired
from the sample vector. The vector 𝑋 [𝑘] resulting from Equation
4, is in the frequency domain and is a vector of complex numbers.
This lets us use two different vector representations of complex
numbers (𝑧): cartesian (Equation 5) and polar (Equation 6).

𝑧 = 𝑎 + 𝑏𝑖 (5)

𝑧 = 𝑟 (cos𝜃 + 𝑖 sin𝜃 ) (6)
This way, we have a pair of vectors for each representation (2
components), making 4 usable inputs 𝑎, 𝑏, 𝑟 and 𝜃 . An additional
5th input was added to the system: the signal cepstrum [18]. The
cepstrum is a mathematical transformation used in audio signal
processing, in particular for period estimation. Cepstral analysis is
one of several methods that enables us to find out whether a signal
contains periodic elements. This way, cepstral information can also
be used to determine the pitch of a signal [17]. Cepstrum is defined
as the inverse DFT of the log magnitude of the DFT of a signal:

𝑐 [𝑛] = 𝐹−1{𝑙𝑜𝑔 |𝐹 {𝑥 [𝑛]}|}. (7)

For a windowed frame audio signal 𝑥 [𝑛] cepstrum is:

𝑐 [𝑛] =
𝑁−1∑
𝑛=0

𝑙𝑜𝑔( |
𝑁−1∑
𝑛=0

𝑥 [𝑛]𝑒−𝑗 (
2𝜋
𝑁 )𝑛𝑘 |) 𝑗 (

2𝜋
𝑁 )𝑛𝑘 , (𝑘 = 0, 1, · · · , 𝑁−1).

(8)
The cepstral coefficients describe the periodicity of the spectrum.

A peak in the cepstrum denotes that the signal is a linear combina-
tion of multiples of the frequency pitch. The pitch period can be
found as the number of the coefficient where the peak occurs.

Regarding the importance of the cepstral information in pitch
estimation, we use it as our 5th system input. Figure 6, shows the
5 system inputs: four of them are directly obtained from the DFT
of the original input audio signal: real (𝑎), imaginary (𝑏), radius (𝑟 )
and angle (𝜃 ). The 5th input (𝑐 [𝑛]) is obtained from the original
sound and is represented in a different scale3. Due to the variety and
redundancy of information, in relation to the 5 inputs, we ensure
that the CGP system has a variety of representations of the same
data, so that it can be able to choose the one who best fits to the
problem.

4.4 Individual Encoding
Usually, Cartesian Genetic Programming contains three node types:
input nodes function nodes and output nodes. Our system has 5
input nodes and only one output node. Our CGP graph contains
only one row with 100 function nodes, which is a common value
for this kind of approaches [12]. Each function node contains 5
different genes (see Figure 7). A function node has two genes for
encoding the inputs: they can be the system inputs or the outputs
of another nodes, and they are 2 because of it is the maximum arity
of our function set. There is also a gene that represents the function
number (𝐹𝑛) from the pre-established function set. And, finally,
there are two genes for the real parameters (𝑃1 and 𝑃2) used as

3All the inputs are normalized to a max value of 1. 𝑦 scale of the cepstrum graph is
limited to 0.1
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Figure 6: System Innputs, (a) real part, (b) imaginary part, (c) radius, (d) angle, (e) cepstrum

Figure 7: Function node genes (5): 2 inputs, 1 code function
and 2 real parameters

parameters for the correct work of the correspondent mathematical
functions from the function set.

The 𝐹𝑛 gene represents the function used by that node chosen
from the function set represented by a lookup table. Note that all
the functions are prepared to receive one or two vectors and all
of them return a vector. Our function set is almost comprised by
filtering operations on vectors and by arithmetic operations with
constants and vectors.

Figure 7 also shows that there are two real parameters in the node
genotype. These parameters are useful for the functions, since each
function uses at most 2 parameters to accomplish its task. In fact,
most functions need real parameters. However, the same parameter
has a different meaning and a different domain from function to
function. To avoid a tremendous increase of parameters and genes
in each node, we use one real parameter to represent constants, and
other one to represent a percentage of an interval. This way, with
only two additional genes, we managed to fulfill all function set
needs. As the same parameter may have one meaning and domain
for one particular function and another meaning and domain for
another function, we normalize the domain of the parameter 𝑃2
to a fix interval. Each function is responsible for mapping that fix
interval to the correct domain for its own purpose. The parameter
𝑝2 of each function with its own range is normalized into [0, 1]: all
intervals are transformed from [𝑎, 𝑏] to a normalized one [0, 1]. By
using this technique, the actual value of any parameter can be seen
as a number between 0 and 1 or a percentage of the interval and
the mutation process becomes standard and easier.

4.5 Mutation
Mutation process plays a fundamental role on the evolutionary
process of Cartesian Genetic Programming based systems. Without
crossover, mutation is the only process responsible for the gen-
eration of new individuals in an offspring. The mutation process
depends of two different stages, ruled by different probability dis-
tributions functions: the first stage decides if and which gene or
genes will be mutated; the second stage decides how these genes
will be mutated. There is a configurable parameter, the mutation
probability that represents the probability of each gene undergo a
mutation. For instance, 𝑝 = 0.015means that each gene will mutate
with a 1.5% probability. Different mutations are performed, accord-
ing to the gene type and domain: if a function gene happens to
be mutated, then a valid value must be chosen for selecting a new
function in the function set lookup table; if a mutation occurs in a
gene node input, then a valid value is the output of any previous
node in the genotype or any system input; the valid values for the
system output genes are the output of any node in the genotype
or the address of a system input. All these mutations happen ac-
cording to the discrete uniform probability distribution function for
integers. Two additional genes can also mutate: the real parameters
used by the functions. These parameters are important because
are used by those functions to perform specific tasks. According to
each function, each parameter has a specific meaning and also has
its own domain range. In this case, we use the normalized interval
[0, 1] as mutation domain. The mutation of the real genes (func-
tion parameters) is done using the normal distribution in order to
address the entire range:

𝑓 (𝑥) = 𝑒−(𝑥−𝜇)
2/(2𝜎2)

𝜎
√
2𝜋

, (9)

where 𝑓 (𝑥) represents the density function of 𝑥 variable, with a
normal distribution. This function is also represented as 𝑁 (𝜇, 𝜎),
where 𝜇 is the mean and 𝜎 is the standard deviation. To perform
the mutation of a function parameter, 𝑃𝑜𝑙𝑑 , we generate a new
random 𝑃𝑚𝑢𝑡𝑎𝑡𝑒 using the normal distribution 𝑁 (𝜇 = 𝑃𝑜𝑙𝑑 , 𝜎), with
𝜎 being configurable in our system. This way, we ensure that when
a mutation occurs in a real parameter, all the parameter interval is
reachable, but with higher probability to mutate to closer values.

For better performance, we keep a list of active and inactive
genes and when there is no mutation in one of the active genes the
fitness function is not computed.
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Figure 8: (a) CGP output signal, (b) harmonic mask (c) computing intersection.

Algorithm 2 Algorithm ((1 + 𝜆) 𝐸𝐴)
1: 𝑡 ← 0;
2: Set current individual 𝐼0 as the best of 𝜆 individuals created

randomly;
3: while a stop condition is not fulfilled, do
4: for i = 1 to 𝜆 do
5: Create a copy 𝑥𝑖 of current individual 𝐼𝑡 ;
6: Mutate each gene of 𝑥𝑖 with probability 𝑝;
7: end for
8: Set new current individual 𝐼𝑡+1 as the best of 𝐼𝑡 ∪
{𝑥1, . . . , 𝑥𝜆 };

9: 𝑡 ← 𝑡 + 1;
10: end while

4.6 Evolutionary Strategy
The evolutionary strategy widely used for CGP is a special case
of the 𝜇 + 𝜆 [4] where 𝜇 = 1 (see Algorithm 2). This means that,
in this special case, the population size is always 1 + 𝜆. First we
select the best of 𝜆 randomly created individuals. Then, at each
iteration (generation), 𝜆 new individuals are generated by applying
mutations on the individual previously selected as the best among
the population. Then, the best among the current individuals, 1+𝜆 of
the offspring becomes the current individual for the next iteration
(generation). An offspring can become the current individual in the
next iteration when it has the same fitness as the current individual
and there is no other individual with a better fitness. According to
Goldman [3], an empirical value for 𝜆 is 4, which was the value we
used.

4.7 Binarization
Our CGP system architecture evolves one classifier for each piano
note. The final output of each classifier should be a binary output:
when the corresponding note is detected the output is 1, otherwise
it is 0. In order to evolve each classifier there is a training stage (see
Section 4.1). During this stage, each generated individual for each
classifier is evaluated based on a fitness function. To compute the
fitness we use F-measure, which is a measure of a test’s accuracy
for binary classification. Therefore, for each audio frame used as
input, it is generated a binary output for each classifier. However,
our CGP system is comprised of mathematical functions whose
arguments are vectors and return vectors only. Thus, at the end
of each CGP graph (output node), we have a vector of float values.
A binarization process was added at the end of each classifier to
transform its output vector into a binary output. This is done by
applying a spectral mask with harmonic information: each classifier
uses its own mask built by the system. The fundamental frequency
of the corresponding note being detected by the classifier (𝐹 0) is
computed and 2 or more triangles are placed centered in 2𝑛×𝐹0 (see
Figure 8 (b)), in this case we use a Harmonic Mask Parameter 𝑛 = 1,
this means that we will use 2 triangles (𝑛 = 0 and 𝑛 = 1). Triangle’s
amplitude and width are also configurable parameters as well as the
number of harmonics. To calculate the 𝐹 0 for a piano note (key) we
use the following Equation that gives the fundamental frequency
𝐹 0 (𝑛) of the 𝑛𝑡ℎ key.

𝐹0 (𝑛) = 440 × 2
𝑛−49
12 𝐻𝑧, (10)

In order to accomplish a binary output, we use a comparison
process between the CGP output vector normalized in amplitude
𝑂𝑐𝑔𝑝 (𝑛) and the spectral harmonic mask with the frequency corre-
sponding to the pitch of the estimator,𝑀𝐹0 (𝑛). The first step is the
normalization of the output vector in amplitude. This way all the
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elements of the vector fall in the interval [0;1]. Then, we generate
the following scalar computing the inner product between the 2
vectors:

𝑥 =

𝑁∑
𝑛=0

𝑂𝑐𝑔𝑝 [𝑛] ×𝑀𝐹0 [𝑛], (11)

where 𝑥 measures the discrete intersection between the two discrete
signals. If we approximate these signals to a continuous domain,
we could see 𝑥 as the intersected area between the two signals.

Finally, we used a threshold function to accomplish the binary
result:

𝑇 (𝑥) =
{
1, if 𝑥 > 𝜃

0, if 𝑥 <= 𝜃
(12)

where 𝜃 is the threshold value. Since both signals are normalized,
the max value for 𝑥 is:

𝑥𝑚 =

𝑁∑
𝑛=0

𝑀𝐹0 [𝑛] . (13)

This threshold value also evolves (mutates) during the training
stage. This way, besides the genes mutation also the threshold may
adapt to reach a better fitness in a faster way. The threshold mu-
tation probability is configurable, and was empirically set to the
same mutation probability of the other genes. When the system
decides to mutate the threshold its mutation values are ruled by the
normal distribution 𝑁 (𝜇 = 𝜃𝑜𝑙𝑑 , 𝜎), which is confined to the inter-
val: [0;𝑥𝑚]. The new threshold depends on the old threshold, that
is: the mean of the normal probability distribution that generates
the new value.

4.8 Fitness evaluation
Thanks to the binarization process, each CGP generated graph can
act as a classifier and dictate if the corresponding piano key is
present on the input audio signal. This way, during the evolution-
ary training process, each classifier can be evaluated according its
classification. This evaluation is done using F-measure (Equation
14).

𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 × 𝑟𝑒𝑐𝑎𝑙𝑙 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝑟𝑒𝑐𝑎𝑙𝑙 + 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 , (14)

where:
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑡𝑝

𝑡𝑝 + 𝑓 𝑝 , 𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑝

𝑡𝑝 + 𝑓 𝑛 . (15)

The main goal of the training or evolutionary process is maxi-
mize the 𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒 in order to reach the most accurate as possible
classifier. During the test phase the fitness function is also com-
puted to evaluate the results of the evolved classifiers for a test data
set.

5 EXPERIMENTS AND RESULTS
Tomake a detailed study of the proposed system results, we evolved
61 classifiers during the training stage, each one for the correspon-
dent piano key, from C2 (MIDI note 36) to C7 (MIDI note 96). Each
piano key is represented by the corresponding MIDI note number,

Table 1: Training Parameters

Parameter Value

Frame Size 4096
Fitness Initial Threshold 1.5
Positive Test Cases 100
Negative Test Cases 100
Outputs 1
Rows 1
Columns 100
Levels Back 100
𝜆 (E.S. 1+𝜆) 4
Mutation Probability 5%
Threshold Mutation Probability 6%
Harmonic Mask 1
Runs 30
Generations 10000

being 60 the MIDI note number corresponding to the C4 musical
note (the middle C).

The experiments comport two distinct stages: the training stage
where all 61 classifiers are evolved and the testing stage where we
test those classifiers to accomplish an accuracy value, using the
F-measure metric.

5.1 Training
The training data set was extracted from MAPS database [2] and it
is composed of both monophonic and polyphonic sounds, being the
polyphonic extracted from the subset called random chords subset.
These are chords composed by random notes without any music
rules, like harmonicity and musical consonance. Training the clas-
sifiers with random chords is an important characteristic because
this way, the evolved classifiers will not be constrained to any kind
of music, like for example western music neither constrained to
any music rules.

The configurable parameters of our proposed CGP system used
in our experiments are presented in Table 1. Also, for the individuals
encoding, we used on single row with 100 nodes. The “Harmonic
Mask” value was empirically set to 1: the CGP system is prepared
use harmonic mask since 1st harmonic to the 5th. The evolutionary
process consisted of 30 runs with 10000 generations each, using
100 positive and 100 negative cases. The classifiers were evaluated
using F-measure metric, explained in Equation 14. The training
results are illustrated in Figure 9: the F-measure mean result for the
61 classifiers reached 95,1%.

5.2 Test
The training results give us an idea about the quality of the clas-
sifiers however the important results are those obtained in the
test stage. During the test phase we use the obtained classifiers to
identify the presence of their corresponding notes or piano keys in
monophonic and polyphonic audio files. We measure the quality
of the classifiers by testing them with a different data set: the test
set. The test set for each classifier consisted in 800 piano audio files
of chords and single notes obtained from the MAPS database [2].
The training set and test set are disjointed. Figure 10 shows the
graph with the achieved performance. During our test stage the
F-measure obtained is up to 73%.
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Figure 9: Training results for 61 Classifiers.

Figure 10: Test results for 61 Classifiers.

Figure 11: Comparison with the state of the art.

5.3 Comparison with the state of the art
Although there is a lack of Evolutionary approaches on multi-pitch
estimation problems in the literature, specially with multiple in-
dependent classifiers architecture, we compare our results with 4
different state of the art algorithms for multi pitch estimation [1].

The overall results shown in Figure 11 demonstrate that our
system reaches 73% in F-measure, being the third best in quality,
only behind Emiya with 79% and Klapuri with 81%. This is also the
only one using an Evolutionary Algorithm (CGP) andwith a parallel
architecture with independent classifiers. Our F-measure results are
in line with the state of the art algorithms, and with much room to
improve. Unlike Klapuri and Emiya algorithms, our architecture is

highly parallelizable: since the evolved classifiers are independent,
they can run in parallel. Our technique has been preliminary tested
on a 8 core processor and, due to its parallelization capabilities, it
worked on real time.

6 CONCLUSIONS AND FUTUREWORK
This article explains and details the Cartesian Genetic Programming
strategy used to address the problem of multi pitch recognition
on piano polyphonic sounds. Our F-measure results are among
the state of the art for this particular task, reaching over 73% in
F-measure. Another peculiar characteristic is the use of Genetic
Programming as methodology. This methodology also allows us to
learn, analyze and even improve the resulting classifiers, because
we can analyze the final mathematical functions evolved for each
classifier, decoding the individual genotype.

This EA system based on CGP generates one independent clas-
sifier for each piano note. This singularity is a great advantage in
time consumption because it allows parallelization in a simple way,
as illustrated in Figure 3. For one audio signal to be tested we have
to run all the 61 classifiers to find which notes it contains. The
system architecture allows classifiers to be run on different ma-
chines or in the same machine but using the multi-core processor
architecture. This way, we can run simultaneously different note
classifiers reducing the time to process an audio signal.

The independent classifiers and the parallelization process has
been analyzed in a preliminary study, and important time gains
have been observed. This will be fully checked in future work, but
we are optimistic about the results the technique described might
provide.
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