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ABSTRACT
The main problem behind Automatic Transcription (Mul-
tiple Fundamental Frequency - F0 - Estimation) relies on
its complexity. Harmonic collision and partial overlapping
create a frequency lattice that is almost impossible to de-
construct. Although traditional approaches to this prob-
lem of rely mainly in Digital Signal Processing (DSP) tech-
niques, evolutionary algorithms have been applied recently
to this problem and achieved competitive results. We de-
scribe all evolutionary approaches to the problem of auto-
matic music transcription and how some were improved so
they could achieve competitive results. Finally, we show how
the best evolutionary approach performs on piano transcrip-
tion, when compared with the state-of-the-art.

Categories and Subject Descriptors
H.5.5 [Sound and Music Computing]: Signal analysis,
synthesis and processing;; I.2.m [Artificial Intelligence]:
Miscellaneous

General Terms
Algorithms

Keywords
Automatic Music Transcription, Pitch Estimation, Multiple
F0 Estimation, Genetic Algorithms

1. INTRODUCTION
Automatic Music Transcription, often calledMultiple Fun-

damental Frequency (F0) Estimation or Multi-Pitch Estima-
tion, consists of having an algorithm that extracts and iden-
tifies all the musical notes from a given acoustic signal. This
is very difficult problem that only the most skilled musicians
can address. Since the first works by Moorer [13] and Pisz-
calski & Galler [15], polyphonic music transcription systems

almost always rely on the analysis of information present in
the frequency domain. Klapuri [7], for instance, uses iter-
ative calculation of predominant F0s in separate frequency
bands and Martin [10] uses blackboard systems. There have
also been applied techniques that use the principles of hu-
man auditory organization for pitch analysis, as the work
of Kashino et al. [6] by means of a Bayesian probability
network, where bottom-up signal analysis can be integrated
with temporal and musical predictions, and Wamsley et al.
[22, 23], who use the Bayesian probabilistic framework to es-
timate the harmonic model parameters jointly for a certain
number of frames. The usage of a Hidden Markov Model
and spectral feature vectors was proposed by Raphael [16]
to describe chord sequences in piano music signals. Carreras
et al. [2] used Neural Networks for spectral-based harmonic
decompositions of signals. Marolt [9] used networks of adap-
tive oscillators to track partials over time. Ortiz et al. [14]
used a physical model of the piano to generate spectral pat-
terns and compare them to the incoming spectral data.

Although there have been several applications of Genetic
Algorithms [5] to Signal Processing [1], Evolutionary Al-
gorithms have almost no applications to Automatic Music
Transcription.

The rest of this document is structured as follows: Section
2 overviews the Evolutionary Approaches to the problem of
Automatic Transcription of Music and Section 3 presents
our conclusions..

2. EVOLUTIONARY APPROACH
It is important to emphasize that the main idea behind a

Genetic Algorithm [5] is to have a set of candidate solutions
(individuals) to a problem evolving towards the desired so-
lution. In each generation those individuals are evaluated
according to their quality (fitness). The worst individuals
are then discarded and the best will generate new individ-
uals resulting from the combination of their parent’s char-
acteristics (genes) and minor variations (mutation). This
way, individuals with better quality tend to live longer and
to generate better and fitter offspring, thus improving the
robustness of the algorithm. Moreover, when addressing a
genetic algorithm to a problem there are several aspects that
must be taken into account:

Genotype How to encode each individual or candidate so-
lution to the problem.

Fitness Function How to evaluate the quality of each can-
didate solution.
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Figure 1: Garcia’s approach chromosome structure
with L = 4 bits.

Selection How individuals are selected from the population
to breed.

Recombination How to employ recombination: given two
individuals, how to exchange genetic material between
them to breed two new individuals (offspring).

Mutation What kind of mutations we should take into ac-
count, according to the problem being solved.

Initialization How the first population is generated.

Survivor Selection How survivors are selected from one
generation to the next.

During the entire section of this document we will describe
how each approach found in the literature addresses these
topics.

2.1 First Genetic Algorithm approach to Poly-
phonic Pitch Detection

The first work in the literature using Genetic Algorithms
for polyphonic pitch detection appears in 2001 by Garcia
[3]. Garcia claims that polyphonic pitch detection can be
considered as a search space problem where the goal is to
find the pitches that compose a polyphonic acoustic signal.
This way, it makes sense to use genetic algorithms since they
perform very well in search problems [4].

Genotype.
Garcia’s approach encodes each chromosome as a binary

string with variable length (see Fig. 1). The chromosome’s
structure is a concatenation of N substrings of L bits each.
Each substring encodes one F0 value using binary fixed-
point representation. Although the length of the L sub-
strings is fixed since F0 range and resolution is specified as
an input parameter, the length of the chromosome is variable
because no assumption is made about the number of F0s in
the signal. The length of the substrings is defined accord-
ing to the frequency range, ΔF0, and frequency resolution,
dF0, as the minimum integer L, where:

2L ≥ ΔF0

dF0
(1)

Fitness Function.
The fitness measure of Garcia’s approach [3], f(s), for a

given string or chromosome, s, is based upon a correlation
between the input spectrum and a comb spectrum defined
in [11]. The partial fitness value fp(s, j) is computed for
each fundamental frequency value, F0j , coded by substring
j in string s, as the correlation between the input magni-
tude spectrum |X(ω)| and a reference comb spectrum with
exponentially decreasing amplitudes e−αh, where h is the
harmonic index and α a specified input parameter:

fp(s, j) =
∑
h

∣∣∣X(2πhF0j)
∣∣∣ .e−αh (2)

After the partial fitness fp(s, j) is computed for a sub-
string j, the input DFT bins used in the correlation sum are
zeroed for the remaining partial fitness evaluations of the
string. This way, each spectral bin is constrained to belong
to only one harmonic series. This strategy penalizes strings
or chromosomes that contain correct F0 values along with
spurious multiples or submultiples. For each chromosome
a raw fitness value, fraw, is then calculated as the sum of
partial fitnesses over all its j substrings:

fraw(s) =

NS∑
j=1

fp(s, j) (3)

The chromosome fitness, f(s), is then computed from the
raw fitness as:

f(s) = fraw(s)−Nsfp (4)

where fp is the mean partial fitness over the whole popula-
tion:

fp =

∑
s,j fp(s, j)∑

s Ns
(5)

and where Ns is the number of F0s or substrings in the chro-
mosome. The subtraction by Nsfp in Equation 4 is a way
to penalize strings with too many F0 codes (it is equivalent
to subtracting the average partial fitness from each partial
fitness) since substrings with partial fitness values smaller
than average will become negative and then will penalize
the global fitness of the chromosome. Strings with any F0
value outside the allowed range are assigned null fitness.

A final fitness correction step is applied to prevent the
premature convergence of the genetic algorithm. This is
employed by imposing a fitness floor value Fmin, such as:

Fmin =
Fmax

β
(6)

where Fmax is the maximum fitness in the current genera-
tion, and β is an input positive constant. Individuals whose
f(s) < Fmin have their fitness reset at f(s) = Fmin.

Selection.
Each individual is selected for breeding according to the

roulette wheel [4] selection operator: for each individual in
the population a roulette wheel slot is assigned, which size
is proportional to its fitness f(s). Garcia implements the
roulette wheel as an array of partial cumulative fitnesses:

fc =
s∑

j=1

f(j) (7)

where an uniformly distributed random number r between
zero and the total cumulative fitness fc(M) is drawn and
then minimum string index s that satisfies the fc(s) > r
condition is chosen.

Recombination.
As recombination operator, Garcia uses the single-point

crossover. This operator is designed as follows: two differ-
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ent points of cut are selected - one per individual - since the
number of encoded F0s can differ from individuals. This
way, two individuals with different chromosome sizes can
breed and generate two offspring also, with different chro-
mosome sizes. This operator also ensures that the chromo-
somes length of the offspring are always multiples of L.

Mutation.
The mutation operator consists on flipping single bit in the

whole genome of an individual. The probability of mutation
(Pn)is given by:

Pn = (1− Pm)(N.L) (8)

where Pm is the probability of mutation per bit and (N.L)
is the chromosome length.

Initialization.
The initial population is composed by randomly generated

individuals: random number of F0s, each with a random F0
value. Both maximum number of F0s and F0 frequency
range are specified inputs.

Survivor Selection.
Each new generation consists of individuals selected from

the previous generation. This selection is made using the
roulette wheel selection operator. Afterwards both recombi-
nation (one point crossover) and mutation are applied. Fi-
nally, if the current best individual is not as fit as the best
individual of the previous generation, the current worst indi-
vidual is replaced by the best from the previous generation.
This strategy is called elitism [4].

Additional Constraints.
Note that this approach does not have in consideration:

onset, offset and also dynamics. The algorithm can tell
which are the fundamental frequencies present on an au-
dio signal but is unable to detect where those pitches start,
where do they end and which are their dynamics.

2.2 Moving from Polyphonic Pitch Detection
to Automatic Music Transcription

Despite Garcia’s approach [3] being able to work with al-
most any frequency and resolution, Lu [8] considers that
a polyphonic audio signal is made of by the 128 possible
pitches (from the low C, frequency 8.18 Hz to a high G,
12543.88 Hz) defined in MIDI specification [12], therefore
an audio signal can have up to 128 specific frequencies.

Genotype.
Traditionally, solutions or chromosomes are represented

as binary strings of 0s and 1s (such as in Garcia’s [3] ap-
proach), but other encodings are also possible. Lu encoded
each individual as a hierarchical structure, which is not far
from the internal representation of a MIDI file [12] (see Fig.
2). Each individual is made of several sequences of notes, or-
ganized as tracks, according to each instrument. Each note
has frequency, a start time and length. Both start time and
length are truncated to time slices. For instance: for tran-
scribing a set of eighth notes, the eighth note should be the
time slice.

Figure 2: Genotype of Lu’s approach: notes are sep-
arated according to each instrument/track. Each
note has frequency, start time and length. Start
and length are truncated to time slices.

Fitness Function.
To evaluate each individual or transcription each tran-

scription is rendered using additive synthesis into an audio
signal, which will be compared with the original audio. The
result of the comparison (distance) is the fitness value of
the corresponding individual. To avoid problems like phase,
Lu [8] proposes that the distance between each individual’s
transcription and the original audio should be measured in
the frequency domain. The fitness function, similar with the
euclidean distance, is defined as:

Fitness =
1−∑tmax

t=0

∑Rochelim
f=fmin (O(t, f)−X(t, f))2

σ
(9)

where O(t, f) is the magnitude of frequency f at time t of
the original audio, X(f, t) is the same for the individual’s
transcription and σ acts as a scaling factor, equivalent to the
first worst transcription, putting all fitnesses values between
[0,1].

Selection.
Although the author of this approach claims that he is

addressing music transcription using genetic algorithms, his
approach does not use recombination, which is the main pil-
lar of genetic algorithms [4]. The approach relies exclusively
on mutations. This way, individuals are not selected for
reproduction.

Recombination.
The author of this approach claims that “the genetic ma-

terial found inside high-fitness individuals is good enough
such that most of the material is at least partially correct”.
According to Lu , the removal of this material for addition
into another individual is detrimental for the donating in-
dividual. This way, recombination was not included in the
approach.

Mutation.
Lu applies a roulette selection to determine which mu-

tation will be applied to each individual. The main pur-
pose of this roulette wheel is having some mutations being
performed more often that others. The proportions of the
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roulette wheel also change over time so that mutations that
perform small incrementational changes are more often ap-
plied during the last generations of the algorithm.

This approach uses the following mutations:

Irradiate Randomly changes one feature (pitch, start time
or end time) of a gene.

Nudge Similar to Irradiate, except that changes are on
the smallest amount possible: pitch is changed by one
semitone, and both start and end time are changed by
one time slice.

Lengthen Adds a random musical note to the chromosome.

Split Inserts silence into an encoded musical note. This
mutation is capable of deleting a note by inserting a
silence with the length of the selected note, shortening
a note by inserting the silence on its end or even split
the note into two notes by inserting the silence in the
middle.

Reclassify Moves a section of the chromosome to a differ-
ent spot in the chromosome. This mutation allows a
set of multiple notes being changed from one instru-
ment to another.

Assimilate Takes a section of the chromosome from one
individual and copies it to another individual.

Initialization.
The initial population is generated by randomly generated

individuals: random number of notes, each with a random
start and duration.

Survivor Selection.
The top third of the population are copied and then mu-

tations are applied on those copies. These new individuals
replace the bottom third (less fit) of the population.

Additional Constraints.
Note that this approach does not have into account the

dynamics of each note. For the synthesis process, instead
of using sample based techniques as Reis et al.[20], Lu[8]
uses simple and very-well known mathematical models like
the sine, square, sawtooth and triangle waves. Therefore,
this approach is only able to deal with sounds generated by
those mathematical models. Also, the input audio files are
MIDI files synthesized with the same synthesizers used inside
the genetic algorithm, which makes turns the transcriptions
much easier to find and without the problem of harmonic
overfitting [20].

2.3 Automatic Music Transcription using Syn-
thesized Instruments

In 2007 Reis and Fernandez [17] proposed a new genetic
algorithm approach to automatic music transcription, using
synthesized instruments. Unlike Lu’s method [8] the syn-
thesized instruments were not simple mathematical models
(sine, sawtooth and triangle waves) but, instead, synthesized
instruments (piano and vibraphone). Reis and Fernandez
[17], similarly as Garcia [3], proposed a genetic algorithm
with recombination, mutation and crossover operators for
pitch detection. The latter approach only takes into account

Individual
Gene Sequence

Note: 65 Note: 69 Note: 72 Note: 76

G
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e

Figure 3: Reis and Fernandez encoding for mono-
phonic transcription. The individual is divided in
time frames, where each time frame has can be one
of 128 possible MIDI pitches plus the option of si-
lence.

the possible 128 MIDI pitches, just as it happens with Lu’s
[8] algorithm.

Genotype.
Reis and Fernandez [17] started proposing a system for

monophonic pitch detection and later upgraded it to sup-
port polyphonic audio signals, just with minor adjustments.
The encoding for the monophonic transcription task is based
on the assumption that a signal is divided in several time
frames, where there can be one of the 128 possible pitches
plus the option of having a silence (see Fig. 3). For poly-
phonic transcription of music, the authors extended the pre-
vious encoding to support several pitches at the same time,
as shown of Fig. 4.

Fitness Function.
Similarly as Lu’s proposal [8], the evaluation of each in-

dividual is done in the frequency domain, to avoid phase
problems, using the STFT. To compare each MIDI-like in-
dividual with the target acoustic signal, each individual is
rendered into an audio signal using additive sound synthesis.
Reis and Fernandez [17] implemented a synthesizer with the
respective oscillator and envelope for the synthesis process.
The fitness evaluator renders each MIDI-like individual con-
verting it in an audio signal and then computes it’s fitness
value by summing the difference between each frequency in
each time slice of the song:

Fitness =
tmax∑
t=0

fmax∑
f=0

(|O(t, f)| − |X(t, f)|)2 (10)

where O(t, f) is the magnitude of frequency f at time slot t
in the acoustic audio signal, and X(t, f) is the same for each
individual. Fitness is computed from time slot 0 to tmax,
traversing all time from the beginning to the end, and from
fmin = 0 Hz to fmax = 22050 Hz, which is the nyquist
frequency of 44100 Hz sample rate.
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Individual
Gene Sequence

Note: 67 Note: 69 Note: 71 Note: 72

Note: 64 Note: 65 Note: 67 Note: 69

Note: 60 Note: 62 Note: 64 Note: 65

Figure 4: Reis and Fernandez encoding for poly-
phonic transcription. The individual is divided in
time frames, where each time frame has can be one
of 128 possible MIDI pitches plus the option of si-
lence.

Selection.
Individuals are selected for breeding with the determinis-

tic tournament [4]. The size of the tournament is 5.

Recombination.
The offspring is generated by applying the classic one-

point crossover [4] on each pair of parents.

Mutation.
The authors only implemented a simple mutation that

changes the pitch of a random note by -1,1 semitone.

Initialization.
As in all the previous works by other authors [3, 8] the

initial population consists of random generated individuals.

Survivor Selection.
The new individuals generated by recombination and mu-

tation are added to the population. Then, the N most fit
individuals (where N is the initial population size) are se-
lected for the next generation.

Additional Constraints.
Although this is able to deal with polyphony, it is not

able to deal with multiple instruments as Lu’s [8] algorithm.
This approach cannot also work with note dynamics.

2.4 First Approach on Real Audio Recordings
The first genetic algorithm approach for polyphonic mu-

sic transcription in the literature dealing with real audio
data and real instruments appeared in late 2007 by Reis et
al. [20]. Since there were, to the moment, three different
genetic algorithm approaches to automatic music transcrip-
tion [8, 17] and polyphonic pitch estimation [3] Reis et al.
[20] decided to propose a standard and generic genetic al-
gorithm approach to the problem, which emphasized sev-
eral important considerations like: genotype, fitness eval-

Individual
Gene Sequence

Note: 60
Start: 0

Duration: 44100
Velocity: 32

Note: 64
Start: 44100

Duration: 44100
Velocity: 64

Note: 67
Start: 88200

Duration: 44100
Velocity: 96

Note: 72
Start: 132300

Duration: 44100
Velocity: 127G

en
ot

yp
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Figure 5: Encoding of the individuals proposed by
Reis et al. 2007 [20] The individual is encoded as a
set note events. Each event has a pitch, start time,
duration and velocity.

uation, recombination, mutation and how to generate the
initial population.

Genotype.
Each individual or chromosome corresponds to a candi-

date solution (transcription), therefore it is made of a se-
quence of note events. The number of genes (note events)
varies from one individual to another. Each gene has all
the information needed to represent that note event: note
onset, duration, dynamics and also an instrument/timbre
associated with that event, if necessary. Fig. 5 shows the
proposed encoding by Reis et al.

Fitness Function.
For the evaluation of an individual, each note event passed

through an internal synthesizer which consisted using previ-
ously recorded piano 30 seconds samples from a Korg SP100
Piano Keyboard at the made MIDI velocity: 64. The release
of the note (decay after releasing the note key) was created
applying the following equation:

R (t) = max

(
0,

2000.0− t
36

2000.0 + t

)
(11)

.
Both original and synthesized streams are cut in time

frames with 4096 samples, with an overlap of 75%. To de-
crease the spectrum leakage, a Hanning window was applied
on each frame, before the STFT. The frequency spectrum
was limited to the range from F0 of the first note to the F0
of last note of the piano’s keyboard (from MIDI-note 21 -
27,5 Hz - to MIDI-note 108 - 4186Hz). The fitness function
used by Reis et al. is defined by:

Fitness =
tmax∑
t=0

Note108∑
f=Note21

||O (t, f) | − |X (t, f) || (12)

Selection.
As in Reis and Fernandéz 07 [17], the selection for breed-
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Parents

Offspring

Random point of cut

Figure 6: One point crossover performed on tempo-
ral dimension.

ing is based on the deterministic tournament, with size of
5.

Recombination.
The recombination operator proposed by these authors is

based on the classic one point crossover [4]. Instead of choos-
ing a random point of cut in the individuals chromosome,
this recombination operator, chooses a random point of cut
on temporal dimension. This happens because despite the
individuals might differ in the number of genes, they have
the same temporal length. The randomly selected point of
cut in time will split any note events that cross the chosen
time value (see Fig. 6).

Mutation.
Reis et al. implemented several mutation operators:

• note change (± octave, ± half tone);

• start position (up to ± 0.5 second change);

• duration (from 50% to 150%);

• velocity (up to ± 16 in a scale of 128);

• event split (split in two events with a silence between);

• event remove;

• new event (random event or duplication with different
note).

Initialization.
For the starting population, these authors created a first

individual based on the highest peaks of the STFT on the
original audio signal. The highest peaks, during each time
frame, create (or maintain) a musical note with the corre-
sponding Fundamental-frequencies (F0). Afterwards, this
individual goes through an hill-climber process that changes
all the events equally in terms of velocity, duration and start
time to adjust durations and velocity to overcome decay and
level differences between the original instrument and the in-
ternal synthesizer. Each additional individual in the initial
population is created based on the initial individual after 10
forced mutations.

Survivor Selection.
5% of each new generation are created based on muta-

tions of the best individual of the previous generation. All
remaining individuals are the most fit of the previous gen-
eration.

2.5 Reducing the Harmonic Overfitting
In the previous proposed Genetic Algorithm approaches

to Polyphonic Music Transcription, Reis et al. [20] noticed
that the genetic algorithm tends to create additional notes
(with lower amplitudes) in harmonic locations of the original
notes to overcome the timbre differences between the inter-
nal samples and original piano sounds. Despite the fitness
values continues to decrease through generations, the quality
of their results started to decrease after some point, mainly
because of a harmonic overfitting. Detected notes continued
there (shown by recall values) but many additional notes
begin to emerge, dropping the precision value.

The fact of these additional notes have low amplitude and
are in harmonic locations, many times even with similar
onsets, strongly decreases their impact from the perception
point of view. Nevertheless, for the metrics or in situations
where the dynamic information is discarded (for instance:
creating music sheets), these errors are very undesirable.

Genotype.
To avoid the problem of harmonic overfitting, Reis et

al. [21] extended their previous approach [20] by creating
harmonic gains that boost or cut the value of the 20 first
harmonic peaks of each synthesized note. Those gains act
almost like an equalizer but instead of operating in fixed
frequency bands, they operate on each note harmonic. In
practice, this is not done with real filters but instead by
applying different weights on the STFT bins belonging to
the note harmonic series. This way, each individual, besides
having a sequence of note events, as its candidate solution
to the problem, also includes additional parameters to help
the internal synthesizer to get a timbre more similar with
the original instrument (see Fig. 7). The gain of the funda-
mental frequency of each note - F0 - is always set to 1 and
its deviation is always set to 0. As for inharmonicity, the
amount of shifting for each harmonic of the harmonic struc-
ture was also encoded within the Individual’s genotype. This
enables each individual to have is own synthesizer, with a
complete evolving harmonic structure. This way the har-
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F19: 1.1

F19: 2

...

...

Note: 72
Onset: 66150

Duration: 22050
Velocity: 32

Figure 7: Encoding of the Individual with the Har-
monic Structure.

monic structure of the internal synthesizer will evolve until
it matches the synthesizer played on the original audio, and
the note events will evolve towards the original song’s notes.

Fitness Function.
Due to the natural logarithmic scale of musical notes,

STFT bins are not equally distributed by all octaves (eg.:
the highest octave occupies the highest half of frequency
bins). To reduce the higher impact of higher notes and, thus,
reduce the harmonic overfitting, the authors performed a di-
vision by f for frequency normalization:

Fitness =
tmax∑
t=0

fs
2∑

f=27.5Hz

||O (t, f) | − |X (t, f) ||
f

(13)

Recombination.
By extending the individual genotype for inclusion of the

harmonic gains and shifts, the recombination operator had
also to be extended to support these additional chromo-
somes: the note events are still recombined using the one
point crossover on the temporal dimension and both har-
monic series and harmonic shifting are recombined using the
classic one point crossover [4].

Mutation.
Two new mutations were included to support the addi-

tional chromosomes:

• harmonic change (up to ± 0.50 gain);

• inharmonicity deviation (up to ± 3 frequency bins).

Note discard.
Another feature proposed by Reis et al. [21] as a means to

avoid the harmonic overfitting is note discard. Note discard
is based on the assumption that most notes have similar dy-
namics. By considering that each note has dynamic scale
between 1 and 128 (MIDI velocity range), this feature dis-
cards all notes present that have a dynamic difference of 20
between the their dynamics and the dynamics of the other
notes existing during the note duration.

Dynamic Range.
Harmonic overfitting can also happen due to noise, weak

harmonics or even frequency neighborhood. Dynamic range

Note: 72
Onset: 66150

Duration: 22050
Velocity: 32

F19: 1.1

F19: 2

...

...

Timbre 1

F19: 1.1

F19: 2

...

...

Timbre 2

F19: 1.1

F19: 2

...

...

Timbre 3

Figure 8: Encoding of the Individual with the Har-
monic Structure for Multi-Timbre support.

feature uses the highest value of the STFT bins of the cur-
rent frame as a reference, and sets all bins of the same frame
with values 40bBs below this reference to 0.

2.6 Automatic Music Transcription of Multi-
Timbral Music

The approach presented by Reis et al. [21] was for tran-
scription of polyphonic piano music. In 2009, the same au-
thors extended their previous approach to deal with other
kinds of pitched instruments, such as: trumpet, saxophone,
clarinet and trombone. Basically, both approaches are ex-
actly the same, except that the individuals chromosome now
includes the spectral envelope and its inharmonicity devia-
tion for each different timbre.

Genotype.
The harmonic structure of each internal synthesizer was

encoded inside the individuals genome (see Fig. 8) to avoid
the harmonic overfitting in each instrument or voice.

2.7 Genetic Algorithm Achieves State-of-the-
Art Results

In 2012, Reis et al. used all their knowledge on apply-
ing Genetic Algorithms to the Automation Transcription of
Music [17, 20, 19, 21, 18] to implement a new and written
from scratch Genetic Algorithm for polyphonic piano music
transcription. This approach takes advantage of spectral en-
velope modeling and dynamic noise level estimation to aid
the transcription process: while the noise is dynamically es-
timated, the spectral envelope of the internal synthesizers is
adapted to best match the piano played in the input signals.

The authors also performed a benchmark where different
state-of-the art algorithms were evaluated and their results
was compared. This comparison was made using three dif-
ferent metrics. The Genetic Algorithm proposed by Reis et
al. ranked as 2nd best algorithm on 2 metrics and as best
algorithm on the remaining metric. Results of the bench-
mark can be seen and heard on:
http://www.estg.ipleiria.pt/~gustavo.reis/benchmark.
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3. CONCLUSION
Although traditional approaches to Automatic Transcrip-

tion of Music do not rely on Evolutionary Algorithms, we
have shown that Genetic Algorithms are fit to the problem
and can achieve competitive results among the state-of-the-
art.
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