
A Novel Approach to Automatic Music Transcription Using
Electronic Synthesis and Genetic Algorithms

Gustavo Miguel Jorge dos Reis
∗

School of Technology and Management
Polytechnic Institute of Leiria, Portugal

gustavo.reis@estg.ipleiria.pt

Francisco Fernandez de Vega
†

University of Extremadura, Spain
fcofdez@unex.es

ABSTRACT
This paper presents a novel approach to the problem of au-
tomatic music transcription using electronic synthesis with
genetic algorithms. Although the problem is well known
and different techniques have been applied before, evolution-
ary algorithms have never been considered when addressing
this problem. We show that, by means of a series of steps,
a polyphonic MIDI file -containing instrument’s partitures-
can be automatically generated from an audio recording, by
extracting and separating simultaneous notes. We describe
also the future steps of our research in order to improve the
genetic algorithm: increasing performance and decreasing
memory usage, extracting the instrument’s features, accu-
rate transcription of note’s duration and, if necessary, the
employment of parallel systems. The results obtained shows
the feasibility of the approach.

Categories and Subject Descriptors
H.5.5 [Sound and Music Computing]: Signal analysis,
synthesis, and processing; I.2.m [Artificial Intelligence]:
Miscellaneous

General Terms
Algorithms

Keywords
Automatic Music Transcription, Genetic Algorithms, Mul-
tiple F0 estimation, Melody Extraction, Polyphonic Music
Transcription, Polyphonic Pitch Estimation

1. INTRODUCTION
Automatic music transcription is the process in which a

computer program writes the instrument’s partitures of a

∗PhD Student†Advisor

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’07, July 7–11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-698-1/07/0007 ...$5.00.

given song or an audio signal. Hence, automatic music tran-
scription from polyphonic audio recordings is the automatic
transcription of music in which there is more than one sound
occurring at the same time: multiple notes on a single instru-
ment (like a piano) or single notes in multiple instruments.

Music transcription is a very difficult problem, not only
from the computational point of view but also in a musi-
cal view since it can only by addressed by the most skilled
musicians. Usually, only pitched musical instruments are
considered. Therefore, recognizing drum instruments or the
sounds of the singer is not discussed here.

Despite the number of attempts to solve the problem, a
practical and applicable, general-purpose transcription sys-
tem does not exist at the present time. The available sys-
tems clearly fall behind skilled human musicians in accuracy
and flexibility [7].

1.1 Terminology
It is important in the context of music transcription and

melody extraction to clarify some terms before going any
further. Pitch is one of the fundamental aspects of music.
It is the tonal height of a sound. Pitch indicates how “high”
or “low” a note sounds. Fundamental Frequency(F0) is the
lowest frequency in an harmonic series. Pitched musical in-
struments are usually based on a harmonic oscillator such
as a string or a column of air. Both can and do oscillate at
numerous frequencies simultaneously. Because of the self-
filtering nature of resonance, these frequencies are mostly
limited to integer multiples of the lowest possible frequency,
and such multiples form the harmonic series. F0 is the corre-
sponding physical term and is defined for periodic or nearly
periodic sounds only. For these classes of sounds, F0 is de-
fined as the inverse of the period. In ambiguous situations,
the period corresponding to the perceived pitch is chosen[7].
The term multiple-F0 estimation refers to the estimation of
the F0s of several concurrent sounds. The term musical me-
ter refers to the regular pattern of strong and weak beats in
a piece of music. Metrical analysis, here also called rhythmic
parsing, refers to the process of detecting moments of musi-
cal stress in an acoustical signal and filtering them so that
the underlying periodicitys are discovered. The perceived
periodicitys (pulses) at different time scales together con-
stitute the meter. Metrical analysis at a certain time scale
is taking place for example when a person taps his foot to
music[7].

All the above elements make music transcription a dif-
ficult problem, which can be considered a search problem
with no exact algorithm to automatically perform the music

2915

transcription. This paper presents a new approach to the
problem of music transcription based on Genetic Algorithms
[5].

The rest of the paper is structured in the following way:
Section 2 describes our proposal while Section 3 presents
our experiments and results. Section 4 describes the next
steps to be performed. Finally section 5 summarizes our
conclusions.

2. TECHNICAL APPROACH
The current problem with the above methods is that they

attempt to conceptualize a process that is still unknown.
There is no standard way to extract a musical representa-
tion from an audio or acoustic signal. The current meth-
ods make strong attempts, but in the end, they are still
trying to quantify a process that is not only computation-
ally unknown, but also only seen in the real world among
skilled musicians. Klapuri likens the process to “reverse-
engineering the ’source code’ of a music signal”[7]. This
process may never be exactly understood.

However, the forward engineering process is known: going
from a musical representation to an audio representation
is what MIDI cards and synthesizers perform all the time.
Therefore, given a sufficient instrument model, it is easy to
render any set of notes, making sense in exploring this path.
Moving away from finding the correct model for the complex
signals to the real problem: discover who is playing which
notes.

Our method uses an electronic synthesizer which com-
bines a genetic algorithm [2] to generate, and then, render
music performances into audio signals. Our fitness evalua-
tor compares the audio signal of each individual with our
target signal (the music we want to transcribe) and returns
the result of the above comparison to the genetic algorithm
making the individuals evolve. In the conclusion of Klapuri’s
summary of transcription[7], he stresses the need for both a
method for analyzing the music and a means of parameter
optimization. Our system fits those precise requirements:
the fitness evaluator analyzes the music and the genetic al-
gorithm returns improved hypotheses.

Our approach is beneficial because it is not limited by any
particular harmonic model. A more traditional approach
might find the highest intensity frequency and automati-
cally assume that it is the fundamental frequency. Or, it
might confuse two instruments that are playing the same
note for one, since their harmonics overlap so much. As a
matter of fact the polyphonic music creates a complex fre-
quency lattice that is computationally infeasible to decon-
struct, even for monophonic signals (as reviewed by Gomez
et al.[3]) However, with our system, this lattice will not need
to be deconstructed, it will rather be reconstructed. It is our
claim that by mimicking the process with which the audio
was originally constructed, the transcriptions produced can
get much closer to an ideal transcription.

2.1 Tools required

2.1.1 MIDI files
Unlike digital audio files (.wav, aiff, etc.) or even com-

pact discs or cassettes, a MIDI file [8] does not need to cap-
ture and store actual sounds. The MIDI file is just a list of
events which describe the specific steps that a sound card or
other playback device must take to generate certain sounds.

Therefore, MIDI files are much smaller than digital audio
files, and the events are also editable, allowing the music to
be rearranged, edited and even composed interactively.

MIDI messages, along with timing information, can be
collected and stored in a computer file system, in what is
commonly called a MIDI file, or more formally, a Stan-
dard MIDI File (SMF). The SMF specification was devel-
oped by, and is maintained by, the MIDI Manufacturers
Association (MMA). MIDI files are typically created us-
ing desktop/laptop computer-based sequencing software (or
sometimes a hardware-based MIDI instrument or worksta-
tion) that organizes MIDI messages into one or more parallel
”tracks” for independent recording and editing. In most but
not all sequencers, each track is assigned to a specific MIDI
channel and/or a specific General MIDI instrument patch.

With the introduction of the Downloadable Sounds (DLS)
format [9], it is possible to combine MIDI files with stan-
dardizes samples of musical instruments, sound effects, or
even dialogue, which are used to recreate an exact copy of
the sound intended by the composer and, in this case, the
music or song we want to transcribe.

2.1.2 Synthesizer
The rendering of MIDI file into an acoustic audio signal is

made by means of electronic synthesis. The main purpose of
a synthesizer is to simulate other instruments (piano, saxo-
phone, strings, drums, etc) or to create new sounds. Unlike
the other musical instruments, which are based in acoustics
principals, the synthesizers are completely electronic instru-
ments. The synthesis methods can be divided into three
different groups:

• Pure synthesis (additive synthesis, subtractive synthe-
sis, frequency modulation);

• Sample based (wavetable, sampling);

• Physical modeling.

The pure synthesis is also referred as analog synthesis, and
tries to create sounds based in electronic elements, such as:
oscillators, filters, mixers, etc. Amongst the main techniques
of this kind, there are three we want to emphasize: additive
synthesis, subtractive synthesis, and frequency modulation
(FM).

The additive synthesis tries to create sounds by adding
diverse simple components (mainly sinusoidal waves), until
we get the desired harmonics. In the subtractive synthesis,
the principle is the opposite. We have a wave full of harmon-
ics (a square wave, a triangle wave, a saw tooth wave, etc.)
and, by means of filtering, some harmonics are removed or
attenuated.

In frequency modulation (FM) there are no sums nor sub-
tractions, but some kind of multiplication. What is done is
to modulate a certain wave with another wave, therefore, an
oscillator is controlled by another oscillator. This technique
can be used to create many harmonics.

The sample based techniques are, as it sounds, based in
previously recorded sound samples. For example, to sim-
ulate the sound of a flute, a synthesizer contains recorded
samples of some notes of the flute. When a note is played,
the synthesizer choose the nearest sample, and if necessary,
it changes the tonal height by applying a pitch-shifter or
something similar. In the case of the duration of the note

2916

Figure 1: The top picture represents a simple music
score with 4 quavers. The middle picture shows an
individual encoding the score. The bottom picture
represents the corresponding MIDI transcription.

being greater than the synthesizer’s sample, the sample is
repeated (or part of it), a couple of times, making what is
commonly referred as loops.

Physical modeling stands on the production of the sounds
of the instruments from their acoustical equations. A couple
of scientists made a set of equations which define the sound
produced by a certain instrument, and based on these equa-
tions, the synthesizer will produce the sound.

2.1.3 Fast Fourier Transform - FFT
A straight comparison of two acoustic signals which mea-

sures the difference between the samples would result in sim-
ilar sounds being rejected because of minute differences in
small factors like phase. Instead, we chose to work in the
frequency domain. The power spectrum throws away phase
so that differences in the phase of sine waves making up the
signal are not considered. Therefore, in order to most ef-
fectively compare two sounds, a fast Fourier transform (also
designated as STFT - Short Time Fourier Transform) is per-
formed on each sound, allowing us to compare the magni-
tudes of all the frequencies.

In the next section, we will employ all the techniques de-
scribed above, within the fitness function required by the
Genetic Algorithm we employ.

3. EXPERIMENTS & RESULTS
Although genetic algorithms have been employed for sig-

nal processing [1], the nature of music transcription prob-
lem is different to a standard signal processing, as we have
explained before. We describe below our approach to the
problem and the results.

In order to address the problem of music transcription we
decided to begin with a simpler approach: transcription of
monophonic waves files and then, as a second step of our
research, address the transcription of polyphonic acoustic
signals.

Parameters Values
Population Size 200
Maximum Generations 2000
Parent Selection Tournament

(tournament size = 5)
Recombination type One Point Crossover
Prob. Mutation 0.01
Survivor Selection Best 200 individuals

(population size)

Table 1: Main parameters of the Genetic Algorithm

3.1 Transcription of Monophonic Wave files
A simple Genetic Algorithm was encoded using jMusic

API1. This API appeared to be the ideal tool for this goal:
Genetic Algorithm support, MIDI generation, it is a tool
for instrument building as well as music making and it is
possible to write Java applications using jMusic components.
These components include a musical data structure with
associated modification and translation classes as well as
some graphical user interface elements.

In a simplistic overview of the Genetic Algorithm classes
in jMusic, the Genetic Algorithm only works for Phrases2,
not any of the other music types like Parts3 and Scores4.
The central class of this framework is the PhrGeneticAlgo-
rithm class.

Simply stated we created a standard genetic algorithm
with basic operations: one point crossover, a mutation that
changes the tone of a random note about a semitone and
elitism. It does not have special operators regarding the
concept of music transcription like: delaying a note, break
a note into two consecutive notes, insert a silence between
two notes, etc. Table 1 shows the the main parameters of
this naive genetic algorithm.

3.1.1 Individuals encoding
Since our primary objective is to get a MIDI representa-

tion as the transcription of the audio file, our algorithm is
something like evolving a set of MIDI-like individuals. Al-
though a MIDI file consists of one header chunk5 and one or
more track chunks of bytes, we decided not to work on this
level, but in an higher level, due to ease of use: it is easier to

1jMusic (see http://jmusic.ci.qut.edu.au/) is a library for
compositional and audio processing tools. It has also native
support for Genetic Algorithms and Cellular Automata.
2The Phrase class is representative of a single musical
phrase. Phrases are held in Parts and can be played at
any time based on their start times. They may be played
sequentially or in parallel.
3The Part class is representative of a single instrumental
part. A Part is made up of a number of Phrase objects, and
Parts in turn are contained by Score objects which form the
highest level in the jMusic data structure.
4The Score class is used to hold score data. Score data
includes is primarily made up of a vector of Part objects.
Commonly score data is algorithmically generated or read
from a standard MIDI file, but can also be read and saved
to file using Java’s object serialization. In this way a Score’s
data can be saved in a more native context.
5A chunk is the smallest unit of content that is used inde-
pendently and needs to be indexed individually. Each chunk
has a type indicated by its chunk type name. Most types of
chunks also include some data. The format and meaning of
the data within the chunk are determined by the type name.

2917

Parameters Values
Number of seconds 6.75
Number of notes 23
Notes see top part of figure 2

(tablature corresponding
to the source wave file)

Table 2: Wave file for the genetic algorithm to tran-
scribe

work with an array of notes rather than to work with many
chunks of bytes.

Basically, the problem is similar to evolving an array of
consecutive notes. Each note has a pitch and a duration.
(see figure 1). In the case of a break (silence) the corre-
spondent pitch is the minimum possible integer. Therefore,
individuals are made up of a number of genes -notes-, each
of them including two parameters, pitch and duration. Al-
though the number of genes in the individual is variable, due
to being tied to the duration of the notes, the parameter was
fixed for each of the experiment performed.

The recombination operator is a basic one point crossover
operator, where all data beyond the randomly selected point
of cut is swapped between the two parents organisms, re-
sulting in two new children. The mutation genetic operator,
randomly shifts the pitch of a random note about {-1,0,1}
semitone. The probability of both mutation and crossover
are listed on Table1.

3.1.2 Fitness function
For monophonic transcription the fitness evaluator has

to compare each individual with a pre-generated frequency
time domain signal: the audio signal - WAV file - we wanted
to transcribe. It was divided in time slots with size 4096
(length = 4096

44100
' 93ms) and for each time slot a FFT was

computed and the F0 extracted, thus generating a frequency
time domain signal. Since each individual was a simple ar-
ray of notes, the fitness evaluator calculated the difference,
with a 5% tolerance, between the corresponding frequency
of each note’s pitch and the F0 for each corresponding time
slot. The frequency of a pitch is given by the equation (1):

Frequency = 6.875× 2
3+pitch

12 (1)

To ensure there were no artifacts of unwanted frequencies,
we used the Hann windowing function[4], which is stated on
equation (2).

w (n) = 0.5

„
1− cos

„
2πn

N − 1

««
(2)

3.1.3 Results of the monophonic transcription ap-
proach

One experiment was performed employing a wave file with
the following characteristics (see Table 2). The parameters
of the genetic algorithm are stated in Table 1. The percent-
age of the correct transcription was about 86.9% (20 out
of 23). We have noticed that, due to working with floating
point numbers, there were errors in the transcription result-
ing from the time rounding. Sometimes, when we are work-
ing with floating point numbers, the result of the sum 0.25
+ 0.25 is not 0.50 but 0.49(9) or 0.5000000000001. Hence

Figure 2: The audio source signal to transcribe and
the corresponding tablature.

Figure 3: Transcription errors due to time round-
ing. The upper tablature corresponds to the music
we want to transcribe and the lower tablature is the
transcription generated by the naive genetic algo-
rithm.

if we divide the result of the above sum by 0.25 the result
sometimes can be greater or less than 2.00. Since there are
not half time slots the result of the division must be an in-
teger and should be always 2, but unfortunately sometimes
it is 1. The figure 3 shows a transcription error due to time
rounding: the upper tablature (red) corresponds to the wave
file, and the bottom tablature is the transcribed version of
our algorithm. This is the same for all figures. Instead of
the wave file signal is shown is partiture for better under-
standing the process and what the algorithm must find.

The solution for this problem seamed to be very obvious:
if we can’t work with floating point numbers for the time,
we will work only with integer numbers. The very first re-
sults of this implementation of the naive genetic algorithm
with the new fitness function were impressive. The tran-
scription of the given real audio songs was very accurate,
sometimes resulting in a perfect match. And this was only
the naive algorithm. Figure 4 shows that 100% of the notes
were correctly transcribed. Our genetic algorithm could ac-
curately transcribe those notes in about 29 generations and
2,7 seconds 6.

After solving the above question a new problem arises
with tempo: the transcriptions are exact in pitch, and start
of each notes, but not in the notes duration. We can see

6All tests were performed in a Pentium IV 3.0 GHz lap-
top computer with 512MB RAM, running FreeBSD 6.1-
RELEASE operating system.

2918

Figure 4: Working only with integer values fixed the
problem of tempo

Figure 5: A note of duration 0.50 counts as two
consecutive notes of duration 0.25

in the figure 5, a note with duration 0.50 results in a tran-
scription of two consecutive notes with the same pitch as
the original, each one with duration of 0.25.

Why does this happens? The main cause for this problem
is the fitness function and how it is calculated. The fitness
function is the sum of the difference of the frequencies for
each time slot. E.g.: Lets say that our transcription has 1
note with a duration d and start a time t, hence the note is
at time slots t, t+1, t+2, (...), t+d−1. The fitness function
will look at the target audio file, and will see if the time
slots t, t + 1, t + 2, (...), t + d − 1 have the same frequency,
corresponding to the note of the transcription. So, if there
is an individual with one note with duration 2 and another
individual with 2 consecutive notes with duration 1 and with
same pitch as the note of the other individual, the fitness
function cannot say which of them is the best because both
have the right frequency at time slot 1 and at time slot 2.
Dealing with notes with different durations leaded as well
to some transcription errors (figure 6).

Figure 6: Transcription errors when dealing with
notes with different durations.

Figure 7: Using smaller window sizes it is possible to
discover the duration of each note. The bottom fig-
ure is a spectrogram - frequency time domain signal
- similar to the one who was processed to compute
the fitness function, but with a smaller window size.

By creating a spectrogram from the audio source file,
we stated that it is possible to discover whenever a note
starts and where it ends, only by applying smaller time slots
(length = 1024

44100
' 23.2ms). Therefore, using a higher reso-

lution it is possible to transcribe monophonic audio signals
with a perfect match (see figure 7).

3.2 Transcription of Polyphonic Wave files
The next step to the transcription of monophonic wave

files was the automatic transcription of acoustic signals.
This stage is more complicated than the previous one. The
individuals had to support polyphony as well as the fitness
evaluator. This leaded to a complete rewriting of the genetic
algorithm, since the jMusic genetic algorithm framework
only works with Phrases, which do not support polyphony.
We had to recode all the entire framework to work with
CPhrases, which are a polyphonic version of Phrases.

3.2.1 Individuals encoding
To support polyphony the individuals had to be updated

to the CPhrase structure. This structure is an array of
Phrases, which is an array of consecutive notes. Each note
has a pitch and duration. Figure 8 shows how individuals
are encoded.

The recombination operator as also the mutation oper-
ator had to be rewritten to deal with the new individual
encoding (polyphony). The recombination is still a basic
one point crossover operator and the mutation operator, still
randomly shifts the pitch of a random note about {-1,0,1}
semitone. For future implementations we are considering to
implement specific mutation operators regarding the music
transcription, such as: break a note into two consecutive
notes, insert a break (silence) between two notes, merge two
notes, etc. to improve the robustness and speed of the ge-
netic algorithm.

2919

Figure 8: The top picture represents a polyphonic
music score with 4 chords. The middle picture shows
an individual encoding the score. The bottom pic-
ture represents the corresponding MIDI transcrip-
tion.

3.2.2 Fitness Function
When we moved to transcription of polyphonic acoustic

signals, the fitness evaluator had to be upgraded to support
polyphony, and then compare the magnitudes of all frequen-
cies.

In order to compare each MIDI-like individual with our
target acoustic signal, it is necessary to render those indi-
viduals into audio signals as well. This is done by means
of additive synthesis. We created an electronic synthesizer
with the respective oscillator and envelope for this process.
Therefore, our fitness evaluator renders each MIDI-like in-
dividual converting it in an audio signal and then computes
it’s fitness value by summing the difference between each
frequency in each time slice of the song (see equation (3)).

Fitness =

tmaxX
t=0

fmaxX

f=0

(O(t, f)−X(t, f))2 (3)

The O(t, f) is the magnitude of frequency f at time slot t
in the acoustic audio signal, and X(t, f) is the same for each
individual. Fitness is computed from time slot 0 to tmax,
traversing all time from the beginning to the end, and from
fmin = 0 Hz to fmax = 22050 Hz, which is the nyquist
frequency of 44100 Hz sample rate.

3.2.3 Results
The very first experiment employing a wave file with a

C major chord (C4 + E4 + G4 + C5) and the genetic al-
gorithm successfully transcribed those notes with a perfect
match. The parameters used were the same as the previ-
ous, monophonic, version (see Table 1). These results were
very enthusiastic, when compared to the three possible notes

Figure 9: Transcription of 3 chords in C major scale.

Figure 10: Transcription of 5 consecutive chords in
C major scale.

transcribed by prior implementations of automatic music
transcription.

Since we are working with audio data with frequency 44.1
KHz, this means that each individual, when rendered to au-
dio data, will have 44100 samples per second. jMusic treats
each music sample as a floating-point with single precision
(32 bits) therefore, to deal with 3 seconds of music we will
have something like 44110 samples× 3 seconds× 32 bits =
4.233.600 for the size of each individual which are 4.233.600

8
=

529.200 bytes. If we consider that our population has 200 in-
dividuals and, in each generation, 100 more individuals are
generated from recombination, we have 158.760.000 bytes
' 159Mb of memory for each generation (and we are only
talking of 3 seconds of music). Since each music sample is
treated like a floating-point rather than short, which as also
32 bits of precision, each operation takes several clock cy-
cles which makes the genetic algorithm hard to compute, but
still with excellent results: figure 9 shows a 100% accurate
transcription of three chords in C major scale (the transcrip-
tion processes was done after 6 generations and took about
6 minutes and 4 seconds).

One final test with five consecutive chords with three notes
each was done. These chords were also in C major scale. To
avoid the genetic algorithm to be stuck in local maxima, we
had to tune the probability of the mutation to 0.1 (10%).
The algorithm took 40 generations (64 minutes and 43 sec-
onds) to transcribe those chords with 100% accuracy (figure

2920

Figure 11: Evolution of the transcription of 5 con-
secutive chords.

10). Figure 11 shows the evolution of our genetic algorithm
in order to transcribe those five chords.

4. NEXT STEPS OF OUR RESEARCH
As future work, we are looking forward to complete a se-

ries of steps: reimplementing the current algorithm focusing
on better performance and less memory usage, extraction
of the instrument’s features (including harmonic structure
and envelope), resolve the problem with the note’s duration
and finally, if necessary, the employment of parallel systems
to increase even more the performance of our genetic algo-
rithm.

4.1 Increasing Performance and Decreasing
Memory Usage

The problem with performance and memory consuming
resides in the evaluation of each individual. In order to
evaluate an individual we have to convert it to an acoustic
audio signal (via electronic synthesis) and process the FFT
to compare with the FFT of the original audio signal. If we
have 3 seconds of music, for instance, since we are working
with audio data with frequency 44.1 KHz, the audio signal of
each individual will have 44.100 samples per second, which
are 132.3007 samples. Since jMusic treats each music sample
as a floating-point value with single precision (32 bits = 4
bytes), we will have something like 529,2 KB8 of memory for
each individual. If we consider that our population has 200
individuals and, in each generation, 100 more individuals are
generated from recombination, we have 158.760.000 bytes '
159MB of memory for each generation (and we are only
talking of 3 seconds of music).

It may seem obvious that there is no need of such mem-
ory quantity but the fact is that it is always used. When
we are evaluating an individual we can generate the indi-
vidual’s audio signal, process the FFT to compare with the
FFT of the original audio signal, store the result of the com-
parison as the fitness value and, finally, free the memory
needed to generate the audio signal. Actually this is what
our algorithm performs, but it still uses the same 159MB of
memory, when dealing with 3 seconds of music. Why this
happens? Because in Java it is the Garbage Collector who

744.100 samples × 3 seconds = 132.300 samples
8132.300 values × 4 Bytes = 529.200 Bytes

frees the memory, and it does not work properly: the al-
gorithm starts getting slower and slower and the free space
on disk (due to the swap) starts to get smaller and smaller.
Sometimes the algorithm crashes because there are no more
disk space. Even when we were forcing the Java’s garbage
collector with System.gc() to free the memory the problem
did not disappeared.

The problem with performance also resides in the fact of
each music sample being treated by jMusic like a 32 bit
floating-point, even when we are dealing with audio data
with only 16 bits of resolution, rather than working with
integer types with 32 or 16 bits of precision. By working with
floating-point types instead of integer types, each operation
takes several clock cycles which makes the genetic algorithm
hard to compute. Therefore, if we work with 16 bit integers
we will have more performance (each operation will take less
clock cycles) and the memory needed will decrease almost
50% (instead of 4 bytes for each sample, we will need only
2 bytes). Even the WAVE specification[6] sates that the
audio data are integer samples and not floating point values,
making sense to use the kind of values as well.

We can conclude that our algorithm has low performance
and uses big quantities of memory because: memory is not
freed properly, we are using 4 bytes per sample instead
of using only two bytes per sample, we are working with
floating-point types instead of integer types and, finally, the
algorithm is implemented in Java, which is slow since it’s
not compiled, but interpreted. The main problem appears
to reside in the Java language. If we recode our algorithm
in the C++ language, we can have full control of memory
management and assure that is only used the essential quan-
tity memory, hence reducing the 159MB of memory to the
size of only one individual, which is 529,2KB. The C++
code is compiled, instead of being interpreted like the Java
language, therefore it makes sense to exploit this feature
to increase even more the algorithm’s performance using a
specific compiler like the Intel compiler ICC9. Intel has also
some performance libraries, such as: Intel Integrated Per-
formance Primitives, Intel Math Kernel Library and Intel
Threading Building Blocks. The Intel Integrated Perfor-
mance Primitives10 library has native support for signal pro-
cessing, including features for: digital filtering, fourier trans-
formation, windowing, emphasis, vector statistics, equaliza-
tion and signal generation. Both fourier transform and sig-
nal generation can be used in our algorithm for FFT and
electronic synthesis respectively. With IPP the content of
signals can be treated as floating point, but also as integer
types (increasing even more the algorithm’s performance).
Intel IPP libraries perform operations at a very fast rate
and, with this library, FFT’s can be initialized to reuse the
same memory data, thus increasing the performance and
reducing the quantity of memory needed.

In a few words: by rewriting our current algorithm in
C++ and using IPP for sound processing, and ICC to com-

9Intel C++ Compiler
10Intel Integrated Performance Primitives (Intel IPP) is
an extensive library of multi-core-ready, highly optimized
software functions for multimedia and data processing
applications, including: video decode/encode, audio de-
code/encode, image color conversion, computer vision, data
compression, string recessing, signal processing, image pro-
cessing, JPEG decode/encode, speech recognition, speech
decode/encode, vector/matrix mathematics and cryptogra-
phy.

2921

pile the code, we can increase very significantly the perfor-
mance of our algorithm.

4.2 Extracting Instrument’s Features
In order to convert a MIDI-like individual into an acoustic

audio signal we have to create a synthesizer for each instru-
ment. The main purpose of a synthesizer is to simulate
other instruments (piano, saxophone, strings, drums, etc)
or to create new sounds. Those synthesizers could evolve as
well to ensure the best individual will be the one who has
the right note notes but also the individual who is playing
the right instruments (has better synthesizers).

For the extraction of the instrument’s features two ap-
proaches arise: the inclusion of the parameters of the synthe-
sizer (harmonic structure and the envelope) in the individual
genotype , hence making each individual to have his set of
synthesizers or the use co-evolution to make the individuals
and synthesizers evolve separately as two species: parasite
and host. In the latter case, we can treat each instrument
(synthesizer) as mathematical equation, using physical mod-
eling synthesis which stands on the production of the sounds
of the instruments from their acoustical equations. Those
equations could evolve using genetic programming until they
achieve the desired results.

4.3 Note’s Duration
To solve the problem of the note’s duration, we are plan-

ning to create a new mutation operator which merges two
consecutive notes, if they have the same pitch. This muta-
tion will create a new individual to ensure that the the best
of both individuals (parent and child) will survive for the
next generation.

4.4 Employment of Parallel Systems
In the case of our algorithm being slower than the other

state-of-the-art algorithms, we are planning to employ par-
allel systems to increase the algorithms performance. The
paralleling process may split a music into two or more dif-
ferent pieces and then send each peace to a different com-
putational node to transcribe each part. We may try to find
different patterns in music, split it according to those pat-
terns (to ensure they remain intact) and then send each pat-
tern to a different computational node. This will reduce the
computation power and the reduce significantly the search
space.

5. CONCLUSIONS
This paper has described the first attempt to perform

Automatic Music Transcription by means of Genetic Algo-
rithms and Electronic Synthesis.

Conducting a series of experiments, we have shown that
genetic algorithms are perfect candidates for solving this
problem. Genetic algorithms can cope with transcribing
monophonic files and performs nicely with a series of poly-
phonic audio files employed for testing the new methodology.

Different encodings and fitness functions were developed
for solving problems related to tempo, transcription of sin-
gle notes, transcription of simultaneous notes, and more dif-
ficult: transcription of octave-related simultaneous notes.

Results demonstrated the success of the technique, and
allowed confidence in trying harder problems, such as the
transcription of polyphonic acoustic signals including differ-
ent instruments and the possibility of extracting each in-
strument by evolving the synthesizer which renders each in-
dividual.

6. REFERENCES
[1] J. T. Alender. An indexed bibliography of genetic

algorithms in signal and image processing. report
94-1-SIGNAL, University of Vaasa, Department of
Information Technology and Production Economincs,
1995.

[2] D. E. Goldberg. Genetic Algorithms in Search,
Optimization, and Machine Learning. Addison-Wesley
Professional, January 1989.

[3] E. Gómez, A. Klaupuri, and B. Meudic. Melody
description and extraction in the context of music
content processing. Journal of New Music Research,
32(1), 2003.

[4] F. J. Harris. On the use of windows for harmonic
analysis with the discrete fourier transform. Proceedings
of the IEEE, 66(1):51–83, 1978.

[5] J. H. Holland. Adaptation in Natural and Artificial
Systems: An Introductory Analysis with Applications to
Biology, Control, and Artificial Intelligence. The MIT
Press, April 1992.

[6] IBM Corporation, Microsoft Corporation. Multimedia
Programming Interface and Data Specification, August
1991.

[7] A. P. Klapuri. Automatic music transcription as we
know it today. Journal of New Music Research,
33(3):269–282, 2004.

[8] MIDI Manufacturers Association. The Complete MIDI
1.0 Detailed Specification, September 1995.

[9] MIDI Manufacturers Association. Downloadable Sounds
- Level 1 Specification Version 1.1b, September 2004.

2922

